[319]
II
TEFF
Survey on the nutritional and health
aspects of teff (Eragrostis Tef)
Client
Dr. Arnold Dijkstra
Hogeschool van Hall-Larenstein
Lector Food safety
T: 058 2846160
E: arnold.dijkstra@wur.nl
Teachers
Ing. Joyce Polman
Hogeschool van Hall-Larenstein
Teacher foodmicrobiology, chemistry and biochemistry
T: 0317 486284
E: joyce.polman@wur.nl
Dr. Arnold van Wulfften-Palthe
Hogeschool van Hall-Larenstein
Teacher
E: arnold.vanwulfftenp[email protected]
Authors
Dr. Patricia Arguedas Gamboa
Instituto Tecnológico de Costa Rica, Sede Central
Apdo. 159-7050 Cartago. Costa Rica
T: 00(506) 2550-2695
E: parguedas@itcr.ac.cr
Lisette van Ekris
Hogeschool van Hall-Larenstein
Student Food science and technology
E: lisettevanekris@wur.nl
[320]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
III
Summary
Teff is an interesting grain used for centuries as the principal ingredient of the Ethiopian
population diet. The principal meal in which teff is used is called enjera: a big flat bread or
pancake, than is eaten alone or with any kind of meats, vegetables and sauces. Teff is the
smaller grain ever known, and even that it has been demonstrated that it was used by
Egyptian Pharaohs; it is until two decades ago that it became the issue of agronomic,
nutritional, food technological, microbiological, chemical and physical research. Teff can be
used too in all kind of bakery products, beverages, sauces ingredient and porridges. This
grain is used too as a livestock.
The potential of this grain as an interesting raw material to new food products development is
due principally to its protein composition: it is gluten free and it has a very high quality of
amino acid composition. It is compared with egg protein and with an ideal protein for children
between two and five years old. A lot of scientific people have been demonstrated that teff
starch has a low glycemic acid, and that it has a mineral composition better than this or other
cereals.
That’s why, this microscopic grain is beginning a big war between different grain producers
and processors. Some companies want to demonstrate that human been needs to include
teff as an important component of his diet. This is against the economical interests of other
big companies and associations, as this that grow, harvest, mill, process and storage wheat
flour.
This work pretend to collect the different information generated about teff grain, in an
objective way, and that can help governments, nutritional, agronomic, and food processing
institutions to better target their research about this topic.
The authors made a brief description of the grain from an agronomical and genetically point
of view. They go deeply in the chemical, physical and microbiological characterisation.
In the macro-chemical composition, this grain offers big possibilities to their processing. The
starch can be modified with chemical procedures, in order to change its physical
characteristics, which made this raw material useful to different technological applications.
In the micro-chemical composition, that is very important to define the nutritional value of a
food, the authors of this work found a lot of contradictions between different articles and
different writers. This made of teff a polemic grain.
The microbiological composition of teff, enjera, and ersho is widely different, according with
the region, the fermentation step and the teff variety used. However, it is demonstrated than
the fermentation step is very important from a nutritional point of view: The relationships
phytate:iron, Tannin:iron, phytate:zinc and tannin:zinc decrease. This increase the availability
of minerals, to be used by human enzymes.
At the last chapter; Medical aspects and teff benefits, the reader can find a little description of
diseases in which teff can help to decrease their incidence or their symptoms (celiac,
annemia, osteoporosis, diabetes and obesity). In almost all the cases, the information found
at the literature it´s not enough to obtain trusty conclusions about the benefits obtained by
patients if they include teff as a normal ingredient of their diet.
Finally, the authors finish with the proposal to elaborate and interdisciplinary and
intersectional big project, in order to know the true, and to define standardized methods to
produce, harvest, processing and storage teff, enjera and other teff products.
[321]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
1
1 Te ff
1.1 Introduction
Teff (Eragrostis Tef) is an intriguing grain, ancient, minute in size, and packed with nutrition.
Teff is believed to have originated in Ethiopia between 4000 and 1000 before Christ (BC).
Nowadays, teff represents the re-discovery of a crop used by ancient civilizations
(Stallknecht, 1993).
It is possible to speak of a re-discovery, because nowadays, there are new techniques to
analyze and well know the chemistry and physical characteristics of crops. In addition to that,
new methods to collect and analyze these data have been developed, leading us to
understand that our ancestor had valuable information about their crop benefits, meanly
about teff.
Recently, a lot of scientists of developing countries, trying to offer new products for
consumers, and trying to satisfy their nutritional needs, they were wondered about the lack of
anemia, osteoporosis, celiac disease and diabetes in the Ethiopia population. It is also well
known, in a worldwide level, that the resistance and general good fitness of Ethiopian sport
people is very good. That’s why new scientists are interested to know all about the teff
composition, the nutritional properties, and the changes that happens at the moment of grain
fermentation, during the preparation of enjera, a flat bread that is responsible for about 70 %
of the Ethiopian population. This research has been done by universities from Ethiopia and
other countries, and also privates companies are working with this crop to make it a ¨golden
grain¨.
Teff seeds were discovered in a pyramid thought to date back to 3359 BC. In contrast to
amaranth, another little grain which was utilized by early civilizations throughout the world,
the grain has been widely cultivated and used only in Ethiopia, India and it's colonies and
Australia (Railey,). Teff is grown primarily as a cereal crop in Ethiopia.
The word teff is thought to have been derived from the Amharic word teffa which means
"lost," due to small size of the grain and how easily it is lost if dropped. It is the smallest grain
in the world, ranging from 11,7mm long and 0,61mm diameter with l000 seed weight
averaging 0,30,4 grams and taking 150 grains to weigh as much as one grain of wheat. The
common English names for teff are teff, love grass, and annual bunch grass. It is
intermediate between a tropical and temperate grass.
[322]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
2
[323]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
3
[324]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
4
[325]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
5
[326]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
6
[327]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
7
[328]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
8
Figure 1.5, Diagram of E. teff and other Eragrostis species (Bay et al, 2000)
[329]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
9
2 Products
2.1 The uses of teff
The principal use of teff grain for human food is the Ethiopian bread (enjera). It is used to
wrap all kind of foods. This is an easy way to eat them, without fork or spoon, and the
nutritional level of the meal increases (www.globalnomad.net/pages/enjera.jpg). Teff is
ground into flour, fermented for three days then made into enjera. Enjera is a sourdough type
flat bread. It is described as a soft,
porous, thin pancake, which has a sour
taste. Teff is free in gluten and therefore,
the bread remains quite flat. When eaten
in Ethiopia, teff flour is often mixed with
other cereal flours, but the flavour and
quality of enjera made from mixtures is
considered less tasty. Enjera made
entirely from barley, wheat, maize or
millet flours is said to have a bitter taste.
The degree of sour taste is imparted by
the length of the fermentation process. If
the dough is fermented for only a short
period of time (no more than ten days),
Figure 2.1, Enjera with vegetables sauce. From fooditudeblog.blogspot.com/
enjera has a tasty sweet flavour. Research studies on the techniques used to make enjera
have indicated that the yeast, Candida guilliermondii (Cast.), is the micro-organism primarily
responsible for the fermentation process (Stewart and Getachew 1962). Enjera is a major
food staple, and provides approximately two-thirds of the diet in Ethiopia (Stewart and
Getachew 1962). It is also eaten as porridge and used as an ingredient of home-brewed
alcoholic drinks. Teff is a very versatile grain. Teff flour can be used as a substitute for part of
the flour in baked goods, or the grains added uncooked or substituted for part of the seeds,
nuts, or other small grains.. It is a good thickener for soups, stews, gravies, and puddings
and can also be used in stir-fry dishes, and casserole dishes. Teff may be added to soups or
stews in either of two ways:
1) Add them, uncooked to the pot a half-hour before serving time.
2) Add them cooked to the pot 10 minutes before serving.
Cooked teff can be mixed with herbs, seeds, beans or tofu, garlic, and onions to make grain
burgers. The seeds can also be sprouted and the sprouts used in salads and on sandwiches.
Teff flour is also used for making traditional alcoholic drinks like tella (local opaque beer) and
katikalla (local spirit), kitta (sweet dry unleavened bread), muk (gruel)(Bultosa et al, 2002).
Teff has been used by Yigzaw et al, to be mixture with Grass pea (Lathyrus sativus). This is
one of the important food legumes in countries like Bangladesh, India and Ethiopia. It has
desirable agronomic in intercrops the component crops can exploit different soil horizons,
whereas a sole crop has its own specific rooting horizon. Another example of mixed cropping
with teff, is the case of sunflower, that we talked about in the Agronomy section. Putnam et
Allan, 1992, indicate that differences of maturity between both crops, to make better use of
light.
[330]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
10
[331]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
11
[332]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
12
[333]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
13
3 Characterisation of teff
Even if some companies and writers are enhancing the composition of teff as a way to
accomplish its re-discovery, teff chemical composition is not far of this of other cereals, even
from a macro component as from a micro components point of view. Bultosa et al, 2002, they
say about that: The micro- and macronutrients level of grain teff is apparently higher than
that of barley, wheat and sorghum. The nutrient composition of grain teff indicates that it has
good potential to be used in foods and beverages worldwide (Bultosa el al, 2002). The amino
acid composition of grain teff is reported to be comparable to that of egg protein, except for
its lower lysine content.
To made a difference between chemical and physical characterisation begin sometimes a
hard work because they are extremely related. The relation between amylose and
amylopectin, define some physical characteristics, as temperature gelatinization, gelation
characteristics, solubility and starch resistance. Thus, the small variations in the amylose
content among teff varieties may influence also the starches to have slightly different
properties.
Using different chemical substances as NaCl, EtOH, NaHCO
3
and CaCO
3
it is possible to
change the medium and as a consequence, physical teff starch properties as foaming
capacity and protein solubility will change.
3.1 Chemical
3.1.1. Macro components
The concentration, relationship and rates between the different macro-components are
essential to determine the texture, appearance and physical characteristics of a food. In
relation with this composition, Food Engineers we have to design food products, and to
select machinery, additives, package materials, etc. The shelf life and then, the storage
systems are defined in function of the food macro composition; Protein, fat, ash and
carbohydrate content are given as 9,6%, 2,0%, 2,9% and 73,0%, respectively.
Lipids: teff starches had slightly lower hydrolyzed lipids (mean 8,9 mg/g) than maize starch
(9,9 mg/g). The crude fat (ether extract) content of the teff starches (mean 0,29%) was
relatively low as compared to that of maize starch (0,34%). The crude fat of grain maize is
around 4,45%, higher than that of grain teff which is around 2% (db) (National Research
Council, 1996). Crude fat (petroleum ether extract) consist mostly of non-starch lipids i.e., it
is not endogenous to the starch [20]. The low crude fat content in teff starch is most probably
related to the low crude fat content of the grain. Bultosa found that the teff total starch lipid
was higher than that of pearl millet (5,0 mg/g) and slightly higher than that of rice (7,6 mg/g).
Starch: In the carbohydrate fraction of grain teff, starch is is the largest proportion (Umeta
and Faulks, 1988). After Bultosa, 2002, the mean amylose content of the teff starches varies
from 28,2 to 28,4, depending of the method used for the determination, and on the teff
variety analysed. Belta et al, 2002, they found an amylose content ranges 24,9-31,7 %. The
authors of this work we think that this differences are not important to determine the potential
of teff as an important component of healthy diets. Amylose determination was made with
two different methods. Both methods showed that the amylose content of the teff varieties
studied is typical of normal native cereal starches like maize, sorghum and wheat (BETTA et
al, 2000) with no waxy- or amylo-type starches.
[334]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
14
Figure 3.1, Starch components, amylase and amilopectin
During the teff products processing, and depending on the degree of enzyme (Whistler and
BeMiller, 1997) or acid treatment, starch can be depolymerised to different types of oligo and
mono saccharides (maltodextrins and glucose).
Table 3.1, Composition of starches from teff and maize.
Teff (five varieties mean)
Maize
Ash (%) (db)
0,16 ± 0,04
0,12 ± 0,03
Protein (%) (N *6.25) (db)
0,19 ± 0,13
0,07 ± 0,01
Crude fat (%) (db)
0,29 ± 0,03
0,34 ± 0,01
Amylose (%)
28,4 ± 2,8
29,5 ± 2,1
Protein: Teff starches had protein contents in the range of 0,16 0,23%. Watson, 1998, he
found a mean protein content of the teff starches of 0,19%. This is higher than that of maize
starch (0,07%). Watson think that this is probably because in commercial maize starch
extraction, SO2 is used, which breaks disulphide bonds solubilising protein. The protein
content among the teff varieties probably varied depending upon the degree of contamination
of the starch by the proteins of the endosperm.
3.1.2. Micro components
As these components are present in very small quantities in the foods, they don’t determine
their texture or their appearance, but their nutritional value, and its function to help human
[335]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
15
VITAMIN
Eragrain content
(mg/100g)
Advised daily amount
for a 75 kg human
(mg)
Available in 150 g of
Eragrain (%)
(B1) Thiamin
0,51
1,0
76%
(B2) Riboflavin
<0,1
1,5
10%
(B3) Niacin
0,80
16
8%
(B6) Pyridoxin
<0,1
3
10%
(C) Ascorbic acid
0,25
70
1%
(M) Folic acid
<0,02
0,4
8%
Source: WHO (1991), Energy & Protein requirements
[336]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
16
Amino Acids
Wheat
(whole grain)
Eragrain flour
Advised daily
amount for a
Advailable in
150 g
Eragrain flour
www.nutritiondata.com
S&C
Research
human 75 kg
(mg)
Isoleucine
508
441
750
88 %
Leucine
926
924
1050
132 %
Lysine
378
327
900
55 %
Methionine
(S)
212
433
975
100%
Cystine
317
217
Phenylalanine
646
601
1050 (incl.
tyrosine)
156% (incl.
tyrosine)
Threonine
395
449
525
128%
Tryptophane
212
126
263
72%
Valine
618
601
750
120%
Source: WHO (1991), Energy & Protein requirements
Component
Wheat (whole grain)
Eragrai
flour
Advised daily
amount
Available in
150 gram
www.nutritiondata.com
S&C
Research
for a human
75kg (mg)
Eragrai
flour
Water (g)
10,3
10,0
Energy (kJ)
1419
1468
Protein (g)
13,7
12,3
75
25%
Fat (g)
1,9
2,1
Starch (g)
60,0
59,8
Fibers (g)
12,2
7,9
30
40%
Calcium (mg)
34
167
900
28%
Iron (mg)
3,9
5,7
12
71%
Magnesium (mg)
138
194
420
69%
Potassium (mg)
405
477
3500
20%
Zinc (mg)
2,9
4,6
15
46%
Copper (mg)
0,4
0,8
1,1
104%
Vitamin C (mg)
0
0,3
70
1%
Phytic acid (mg)
800
393
Source: WHO (1991), Energy & Protein requirements
[337]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
17
[338]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
18
[339]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
19
WSI: Water solubility index. Water solubility index reflects the strength of the micellar
network within the starch granules (Qian et al, 1998). The leaching of small molecular weight
polysaccharides will increase as the micellar network of the starch granules become weak.
The RVA (Rapid Visco Analyser) pasting curves of teff starches and maize starch are given
in Fig. . The viscosity parameters evaluated are shown in Tab. 3.5
The mean initial swelling temperature (Ti) for teff starches (74,0 °C) was virtually identical to
that of maize starch (74,1 °C) (Tab.3.5), but apparently higher than that of sorghum starch.
The mean peak viscosity (PV) (269 RVU) of the teff starches was considerably lower than for
maize starch (313 RVU). Small granule size was positively correlated with resistance to
swelling, less swelling and less peak viscosity in wheat, potato and maize native starches
(Fortuna et al, 2000) and this may apply to the case of teff starch. Teff starches took longer
time (mean Pt 4,19 min) to reach PV than the maize starch (mean 2,90 min).
Table 3.5, Pasting properties of starch from teff and maize
Parameters
Mean teff varieties
Maize
Ti
74,0 ± 1,1
74,1a ± 0,1
PV (PVU)
269 ± 13
313d ± 2
Pt (min)
4,19 ± 0,62
2,90a ± 0,04
HPV (RVU)
190 ± 13
184b ± 2
BV (RVU)
79 ± 17
129e ± 3
Rst (RVU/MIN)
8,4 ± 1,8
12,2c ± 0,3
CPV (RVU)
292 ± 14
344c ± 4
SBV (RVU)
101 ± 11
161c ± 6
The mean breakdown viscosity (BV) for teff starch pastes (79 RVU) was considerably lower
than that of the maize starch paste (129 RVU). At BV, the swollen granules disrupt further
and amylose molecules will generally leach out into the solution and align in the direction of
the shear (Whistler and BeMiller, 1997).
Figure 3.4, Rapid Visco Analyzer.
From:http://images.google.nl/images?hl=en&q=Rapid+Visco+Analyzer&btnG=Search+Images
&gbv=2
[340]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
20
0 5 10 15 20 25
0
80
60
160
240
320
30
90
120
Maize
Teff var mean
Time (min)
Viscosity (RVU)
Temperature (ºC)
[341]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
21
Table 3.6, Gelatinisation temperature, Water Absorption Index (WAI) and Water Solubility
Index (WSI) of starches from teff and maize.
Teff (five varieties mean)
Maize
Granule size (µm)
2-6
5-30
Gelatinisation temp. (ºC) (To-Tp-Tc)
68,0-74,0-80,0
65,0-73,0-80,0
WAI (%) (db)
108 ± 4
86 ± 2
WSI (%) (db)
0,34 ± 0,08
0,98 ± 0,06
To be onset, Tp is peak and Tc is conclusion gelatinisation temperatures; amylose [%]by the
Con A method of Gibson et al. and amylose [%]by the iodine binding of Chrastil.
Abstract made by the writers of this work, from Bultosa et al, 2002
Mean onset (To), peak (Tp) and conclusion (Tc) gelatinization temperatures of teff starches
were 68,0, 74,0 and 80,0 °C, respectively (Table 3.6). For the maize starch the values were
65,0, 73,0 and 80,0 °C, respectively. The teff starch gelatinisation temperature is thus similar
to that of tropical cereal starches and resembling most closely that of rice starch (68,0, 74,5,
78,0 °C). The range is somewhat narrower when compared to that for maize starch. Starch
gelatinisation is an irreversible process and includes granule swelling, native crystallite
melting, loss of birefringence and starch solubilisation.
The WSI of all teff starches (mean 0,34%) was considerably lower than that of maize starch
(mean 0,96%) (table 3.6).
Aerodynamic properties
Teff threshing is carried out in Ethiopia by trampling over the cut crop collected on a flat
surface with oxen. Separation of teff grain is carried out by throwing the grain and material
out of grain mix in air using the difference in aerodynamic properties. Cleaning is performed
by manually wafting air over the grain chaff mix with a dried hard leather strap (Zedwu,
2007).
Figure 3.6. Small and medium level grain cleaning. From
www.cd3wd.com/.../X0027S/ES/X0027S04.HTM
Bultosa and Taylor commented on the possibility of using a combine harvester for harvesting
of teff, but they added that teff grain losses can be high due to the very small size and light
mass of the grain. The equivalent diameter of teff grain was reported to vary between 0,71
and 0,87 mm and thousand grain mass 0,2570,421 g (Zewdu & Solomon, 2007).
By defining the terminal velocity of different threshed materials, it is possible to determine
and set the maximum possible air velocity in which material out of grain (MOG) can be
[342]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
22
[343]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
23
Figure 3.7, Effect of moisture content on terminal velocity of teff grain
Figure 3.8, Effect of moisture content on drag coefficient of teff grain
Processing modification of physical properties.
In all the food and beverage products in which teff are used, the starch granules are
structurally transformed (Bultosa and Taylor, 2004).
During the baking of enjera, starch is completely gelatinised to form a steam-leavened,
spongy textured matrix, in which fragments of bran, embryo, micro-organisms and organelles
are embedded. Gelatinised starches have a tendency to retrograde, which can affect the
texture and shelf-life acceptability of foods (Whistler and BeMiller, 1997). The smaller
setback and low cold paste viscosity of teff starch compared to maize starch is an indicator of
slow retro gradation tendency which might have a positive role in respect of storage stability
of food products made with teff starch.
0,85
0,80
0,75
0,65
0,70
0,60
Drag coefficient
0 5 10 15 20 25 30
Moisture content
(%)
0 5 10 15 20 25 30
Moisture content
(%)
3,1
2,8
4,0
3,7
3,4
2,5
Terminal velocity, m/s
[344]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
24
The differential scanning calorimetry (DSC) gelatinisation temperature is similar to that of
other tropical cereals. The lower swelling power, apparently lower percentage crystallinity
and lower DSC gelatinisation endotherms compared to maize starch suggest the degree of
crystallinity in the teff starch is less and the proportion of long amylopectin, a chain is
probably smaller (Bultosa, 2003).
Gelatinisation temperature range was 68,074,080,0 °C, typical of tropical cereal starches,
and resembling the temperature range of rice starch.
Figure 3.9, Differential scanning calorimeter.
From:http://content.answers.com/main/content/wp/en-commons/thumb/c/c8/288px-
Differential_scanning_calorimeter.jpg
The mean intrinsic peak viscosity (269 RVU), breakdown viscosity (79 RVU), cold paste
viscosity (292 RVU) and setback viscosity (101 RVU) determined were considerably lower
than that of maize starch. Teff starch has higher water absorption index (WAI) (mean 108%)
and lower water solubility index (WSI) (mean 0,34%) than maize starch.
Matrix change of starch was reported to be a major contributor to the texture of enjera
(Parker et al, 1989). During the baking of enjera, starch is completely gelatinised to form a
steam-leavened, spongy matrix, in which fragments of bran, embryo, micro-organisms and
organelles are embedded.
Bultosa et al, they think that the observed narrow gelatinisation temperature range for teff
starch is probably related in part to its relatively more uniform granule size distribution (26
μm in diameter) as compared with maize (5–30 μm in diameter) (Whistler and BeMiller,
1997), because in granules of wide size range like wheat (2–55 μm in diameter, 52 85 °C)
and barely (0,944,9 μm in diameter, 52,0 69,7 °C) (Tang et al, 2001) the range is broader.
Effect of chemical environment on teff physical properties.
An effective utilization of a new plant protein in food product formulation demands that its
food properties be investigated in order to find out whether such supplement possesses the
appropriate functional properties for acceptable food application (Akintayo et al, 1999;
Chavan et al, 2001). In addition to acceptable functionality, the development in food
[345]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
25
NaCl
CH3COOH
Whipping volume (ml)
108
Control 0,05 0,10 0,50 1,00 1,50
Solution molar concentration (M)
96
102
106
100
116
114
112
Figure 3.10, Foaming capacity of ETPC in different concentration of NaCl and CH
3
COOH.
From Arongudade.
[346]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
26
Figure 3.11, Injera, with a vegetables sauce. From
www.globalnomad.net/.../print_quick%20facts.htm
[347]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
27
100
Fig. Distribution of C. milleri ( ), R. mucilaginosa ( ), K. marxianus ( ),
P. naganishi ( ) and D. hansenti ( ) in ersho samples, collected from four
households.
80
40
20
0
60
Positive samples ( % of total)
[348]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
28
[349]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
29
4 Medical aspects and teff benefits
Teff grain is a very small grain. This made that the flour consists the bran and the germ. This
makes teff flour high in nutrient value, because the bran and germ are the most nutritious
parts of any grain. Teff has a very high calcium content, and contains high levels of
phosphorous, iron, copper, aluminium, barium, and thiamin. It is considered to have an
excellent amino acid composition, with lysine levels higher than wheat or barley and slightly
less than rice or oats (Stallknecht, 1997). Teff is high in protein, carbohydrates, and fibre.
The protein composition offers an excellent balance among the essential amino acids (Yu,
2006). It contains no gluten so it is appropriate for people with gluten intolerance
(Stallknecht, 1999).
While the reported high iron content of teff seed has been refuted, the lack of anemia in
Ethiopia is considered to be due to the available iron from enjera (Mamo and Parsons 1987).
Teff is the main staple in the northern, western and central parts of the country (Umeta,
2007). Some scientists think that the high results about teffs iron content are due to
ferruginous soil ground into the outside surface of the grains. That’s why Sukian and Pittwell,
1968, they decided to check the iron content of teff once more.
It is concluded from these results that the true iron content of the actual dirt-free teff grain is
about 0,0033%. However Melaks has obtained higher values than Almgdrd using teff fresh
from the plant, threshed in the laboratory (Sukian and Pitwell, 1968). This may mean either
that the iron content is very variable, that Melak's sample was contaminated by wind-blown
dust embedded in the grain wall, or that the outer seed wall as distinct from the husk is richer
in iron than the central grain.
On the other hand, iron actually embedded in the grain walls must be considered to be a
dietary source of iron along with the actual true iron content of the grain itself.
Zinc and iron are two of the micronutrients that are most often deficient in developing
countries. Iron deficiency is the most important cause of nutritional anemia. This arises from
the low bioavailability of non-haem iron (Hallberg and Hulthén, 2000) caused not only by
phytate but also tannins in the diet. Phytic acid, which is present in significant amounts in the
seed coat of cereals and legumes (Umeta et al, 2007) exerts its inhibitory effect on the
absorption of zinc and iron by forming insoluble complexes in the gut under physiological
condition (Wise, 1995). The formation of such chelates depends on the ratio of the content of
zinc, iron or calcium relative to that of phytate in the food. Other minerals of nutritional
importance that are chelated by phytate are copper and manganese (Wise, 1983; Hallberg et
al, 1987).
Different authors have demonstrated than during the teff paste fermentation, the phytate:iron
molar ratio decrease. That’s why, Ethiopian scientists and nutritionist agree about the need
to improve the practice to ferment teff before used in enjera production. Given the high iron
content and the relatively favourable phytate:iron molar ratio, teff enjera was the best source
of bioavailable iron of all foods analysed by Umeta et al, 2007, between the Ethiopian foods.
In the following table, Thompson, 2001, presents de metal concentrations in teff. The authors
of this work calculated the phytate:iron (p/p) ratio.
[350]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
30
Table 4.1, Metal concentrations in teff
Food type (n)
Zinc (mg/100 g)
Iron (mg/100 g)
Calcium (mg/100 g)
Phosphorus (mg/100 g)
Phytate (mg/100 g)
Tannin (mg/100 g)
PHYT/IRON (p/p)ratio
(*)
Teff injera, unfermented (4) 1,41±0,30 30,3±3,0 62,7±0,4 179±9 389±10 60,1±6,2 12,84
Teff injera, fermented (5) 1,16±0,20 34,7±4,1 61,4±3,1 164±8 126±8 49,8±4,2 3,63
Maize injera, unfermented (5) 0,88±0,10 4,2±0,7 19,2±2,1 135±7 282±6 64,6±4,7 67,14
Sorghum injera, unfermented (6) 0,91±0,21 9,2±2,1 13,2±1,4 115±8 325±12 53,2±5,1 35,33
Sorghum injera, fermented (6) 0,74±0,21 8,1±1,7 11,2±1,9 102±9 75±2 49,8±4,1 6,15
Wheat injera, fermented (5) 1,50±0,32 3,5±0,8 23,1±2,1 188±7 137±9 21,2±2,3 39,14
Maize bread (4) 1,10±0,30 5,2±1,2 8,3±1,4 176±8 411±12 50,3±6,4 79,04
Sorghum bread (2) 0,69±0,20 6,8±0,2 13,1±1,9 109±4 296±7 83,0±2,0 43,53
Wheat bread (5) 1,60±0,24 5,4±1,2 23,1±3,1 182±9 542±11 23,3±3,2 100,37
Maize porridge (6) 0,60±0,20 3,6±1,2 10,2±1,3 149±5 205±9 23,9±3,7 56,94
Sorghum porridge (4) 0,69±0,13 6,3±1,3 9,2±1,2 101±6 237±7 111,5±2,5 25,76
Maize, boiled (6) 1,27±0,23 3,5±0,7 12,1±1,2 184±7 344±11 16,9±1,4 28,43
Sorghum, boiled (3) 0,63±0,05 3,6±0,8 11,2±1,0 94±3 272±8 121,7±2,6 75,56
(*) Calculated by the authors from the Thompson information.
Analysing this table, it is evident that teff enjera has a bigger iron content that other ethiopian
foods, but it has a high phytic acid content too, even when the fermentation is applied.
It is evident too the big change caused by fermentation process on the phytate:iron p/p ratio,
calculated by the authors of this work. In the particular case of teff, this value decrease 4
times, after the fermentation. In the sorghum case, the value decrease 5 times.
Enjera made from fermented paste, is the bread with the lower phytate:iron p/p ratio. It is
easy to understand why, nutritionists in Ethiopia are promoting the practice to ferment teff,
before to use it in enjera production.
Presently, there is general agreement that wheat, rye, and barley are harmful, and rice and
corn harmless to people that has to follow a gluten-free diet. The acceptability of many other
plant foods as amaranth, quinoa, buckwheat and teff continues to be debated (Thompson,
2001). The different institutions related with nutrition and health has thousands of
contradictions. Some of the authors involved in this kind of discussion, they say that a lot of
investigations were subject to significant methodological limitations: small study populations,
short periods of investigation, and/or no available tests to measure the direct effect of oats
and other cereals on the intestinal mucosa. There is not a matter to have doubts that humans
need to continue with the research in this important topic.
After the Thompson point of view, many gluten-free cereal foods (eg. bread, pasta, cold
cereal) are made from refined flour and/or starch and most are not enriched with iron and B
vitamins. As a result, a gluten-free diet may contain inadequate amounts of fibre, iron,
thiamin, riboflavin, niacin, and folate. Then, if we know that teff has a high iron content, a
good amino acid composition and a lack of gluten protein it is evident that its addition in the
products developed to patients with celiac disease, increase the nutritional value to this
patient’s gluten-free diet.
Presently, the only effective treatment for celiac disease is a life-long gluten-free diet. But
Rizello et al, 2007, they used a new mixture of selected sourdough lactobacilli and fungal
proteases to eliminate the toxicity of wheat flour during long-time fermentation. Albumins,
globulins, and gliadins were completely hydrolyzed, while ca. 20% of glutenins persisted. The
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
30
Table 4.1, Metal concentrations in teff
Food type (n)
Zinc (mg/100 g)
Iron (mg/100 g)
Calcium (mg/100 g)
Phosphorus (mg/100 g)
Phytate (mg/100 g)
Tannin (mg/100 g)
PHYT/IRON (p/p)ratio
(*)
Teff injera, unfermented (4) 1,41±0,30 30,3±3,0 62,7±0,4 179±9 389±10 60,1±6,2 12,84
Teff injera, fermented (5) 1,16±0,20 34,7±4,1 61,4±3,1 164±8 126±8 49,8±4,2 3,63
Maize injera, unfermented (5) 0,88±0,10 4,2±0,7 19,2±2,1 135±7 282±6 64,6±4,7 67,14
Sorghum injera, unfermented (6) 0,91±0,21 9,2±2,1 13,2±1,4 115±8 325±12 53,2±5,1 35,33
Sorghum injera, fermented (6) 0,74±0,21 8,1±1,7 11,2±1,9 102±9 75±2 49,8±4,1 6,15
Wheat injera, fermented (5) 1,50±0,32 3,5±0,8 23,1±2,1 188±7 137±9 21,2±2,3 39,14
Maize bread (4) 1,10±0,30 5,2±1,2 8,3±1,4 176±8 411±12 50,3±6,4 79,04
Sorghum bread (2) 0,69±0,20 6,8±0,2 13,1±1,9 109±4 296±7 83,0±2,0 43,53
Wheat bread (5) 1,60±0,24 5,4±1,2 23,1±3,1 182±9 542±11 23,3±3,2 100,37
Maize porridge (6) 0,60±0,20 3,6±1,2 10,2±1,3 149±5 205±9 23,9±3,7 56,94
Sorghum porridge (4) 0,69±0,13 6,3±1,3 9,2±1,2 101±6 237±7 111,5±2,5 25,76
Maize, boiled (6) 1,27±0,23 3,5±0,7 12,1±1,2 184±7 344±11 16,9±1,4 28,43
Sorghum, boiled (3) 0,63±0,05 3,6±0,8 11,2±1,0 94±3 272±8 121,7±2,6 75,56
(*) Calculated by the authors from the Thompson information.
Analysing this table, it is evident that teff enjera has a bigger iron content that other ethiopian
foods, but it has a high phytic acid content too, even when the fermentation is applied.
It is evident too the big change caused by fermentation process on the phytate:iron p/p ratio,
calculated by the authors of this work. In the particular case of teff, this value decrease 4
times, after the fermentation. In the sorghum case, the value decrease 5 times.
Enjera made from fermented paste, is the bread with the lower phytate:iron p/p ratio. It is
easy to understand why, nutritionists in Ethiopia are promoting the practice to ferment teff,
before to use it in enjera production.
Presently, there is general agreement that wheat, rye, and barley are harmful, and rice and
corn harmless to people that has to follow a gluten-free diet. The acceptability of many other
plant foods as amaranth, quinoa, buckwheat and teff continues to be debated (Thompson,
2001). The different institutions related with nutrition and health has thousands of
contradictions. Some of the authors involved in this kind of discussion, they say that a lot of
investigations were subject to significant methodological limitations: small study populations,
short periods of investigation, and/or no available tests to measure the direct effect of oats
and other cereals on the intestinal mucosa. There is not a matter to have doubts that humans
need to continue with the research in this important topic.
After the Thompson point of view, many gluten-free cereal foods (eg. bread, pasta, cold
cereal) are made from refined flour and/or starch and most are not enriched with iron and B
vitamins. As a result, a gluten-free diet may contain inadequate amounts of fibre, iron,
thiamin, riboflavin, niacin, and folate. Then, if we know that teff has a high iron content, a
good amino acid composition and a lack of gluten protein it is evident that its addition in the
products developed to patients with celiac disease, increase the nutritional value to this
patient’s gluten-free diet.
Presently, the only effective treatment for celiac disease is a life-long gluten-free diet. But
Rizello et al, 2007, they used a new mixture of selected sourdough lactobacilli and fungal
proteases to eliminate the toxicity of wheat flour during long-time fermentation. Albumins,
globulins, and gliadins were completely hydrolyzed, while ca. 20% of glutenins persisted. The
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
30
Table 4.1, Metal concentrations in teff
Food type (n)
Zinc (mg/100 g)
Iron (mg/100 g)
Calcium (mg/100 g)
Phosphorus (mg/100 g)
Phytate (mg/100 g)
Tannin (mg/100 g)
PHYT/IRON (p/p)ratio
(*)
Teff injera, unfermented (4) 1,41±0,30 30,3±3,0 62,7±0,4 179±9 389±10 60,1±6,2 12,84
Teff injera, fermented (5) 1,16±0,20 34,7±4,1 61,4±3,1 164±8 126±8 49,8±4,2 3,63
Maize injera, unfermented (5) 0,88±0,10 4,2±0,7 19,2±2,1 135±7 282±6 64,6±4,7 67,14
Sorghum injera, unfermented (6) 0,91±0,21 9,2±2,1 13,2±1,4 115±8 325±12 53,2±5,1 35,33
Sorghum injera, fermented (6) 0,74±0,21 8,1±1,7 11,2±1,9 102±9 75±2 49,8±4,1 6,15
Wheat injera, fermented (5) 1,50±0,32 3,5±0,8 23,1±2,1 188±7 137±9 21,2±2,3 39,14
Maize bread (4) 1,10±0,30 5,2±1,2 8,3±1,4 176±8 411±12 50,3±6,4 79,04
Sorghum bread (2) 0,69±0,20 6,8±0,2 13,1±1,9 109±4 296±7 83,0±2,0 43,53
Wheat bread (5) 1,60±0,24 5,4±1,2 23,1±3,1 182±9 542±11 23,3±3,2 100,37
Maize porridge (6) 0,60±0,20 3,6±1,2 10,2±1,3 149±5 205±9 23,9±3,7 56,94
Sorghum porridge (4) 0,69±0,13 6,3±1,3 9,2±1,2 101±6 237±7 111,5±2,5 25,76
Maize, boiled (6) 1,27±0,23 3,5±0,7 12,1±1,2 184±7 344±11 16,9±1,4 28,43
Sorghum, boiled (3) 0,63±0,05 3,6±0,8 11,2±1,0 94±3 272±8 121,7±2,6 75,56
(*) Calculated by the authors from the Thompson information.
Analysing this table, it is evident that teff enjera has a bigger iron content that other ethiopian
foods, but it has a high phytic acid content too, even when the fermentation is applied.
It is evident too the big change caused by fermentation process on the phytate:iron p/p ratio,
calculated by the authors of this work. In the particular case of teff, this value decrease 4
times, after the fermentation. In the sorghum case, the value decrease 5 times.
Enjera made from fermented paste, is the bread with the lower phytate:iron p/p ratio. It is
easy to understand why, nutritionists in Ethiopia are promoting the practice to ferment teff,
before to use it in enjera production.
Presently, there is general agreement that wheat, rye, and barley are harmful, and rice and
corn harmless to people that has to follow a gluten-free diet. The acceptability of many other
plant foods as amaranth, quinoa, buckwheat and teff continues to be debated (Thompson,
2001). The different institutions related with nutrition and health has thousands of
contradictions. Some of the authors involved in this kind of discussion, they say that a lot of
investigations were subject to significant methodological limitations: small study populations,
short periods of investigation, and/or no available tests to measure the direct effect of oats
and other cereals on the intestinal mucosa. There is not a matter to have doubts that humans
need to continue with the research in this important topic.
After the Thompson point of view, many gluten-free cereal foods (eg. bread, pasta, cold
cereal) are made from refined flour and/or starch and most are not enriched with iron and B
vitamins. As a result, a gluten-free diet may contain inadequate amounts of fibre, iron,
thiamin, riboflavin, niacin, and folate. Then, if we know that teff has a high iron content, a
good amino acid composition and a lack of gluten protein it is evident that its addition in the
products developed to patients with celiac disease, increase the nutritional value to this
patient’s gluten-free diet.
Presently, the only effective treatment for celiac disease is a life-long gluten-free diet. But
Rizello et al, 2007, they used a new mixture of selected sourdough lactobacilli and fungal
proteases to eliminate the toxicity of wheat flour during long-time fermentation. Albumins,
globulins, and gliadins were completely hydrolyzed, while ca. 20% of glutenins persisted. The
[351]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
31
[352]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
32
[353]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
33
[354]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
34
4.2 Iron
4.2.1. Anemia
Anemia, also called “iron poor blood”, is a condition in which a person’s blood has a low
numbers of red blood cells (RBC), or the RBCs don’t have enough haemoglobin.
Haemoglobin is an iron-rich protein that gives the red colour to blood and carries oxygen
from the lungs to the rest of the body. The body needs iron to make the haemoglobin. In
people with anemia, the blood does not carry enough oxygen to the rest of the body. As a
result, people with anemia feel tired, along with other symptoms, because their bodies are
not receiving enough oxygen. In severe or prolonged cases of anemia, the lack of oxygen in
the blood can cause serious and sometimes fatal damage to the heart and other organs of
the body.
A low Iron content is not the only cause of anemia. A shortage of folic acid or vitamin B12
can also be the cause of anemia.
Women and people with chronic diseases are at greater risk for anemia. Many types of
anemia can be mild, short-lived, and easily treated. Some forms of anemia can be prevented
with a healthy diet, and other forms can be treated with diet supplements.
Certain types of anemia may be severe, long-lasting, and life threatening if not diagnosed
and treated. People who have symptoms of anemia should see their doctor to find out if they
have the condition, its cause and severity, and how to treat it.
While Ethiopian people are eating a lot teff, which is rich of iron it is probable to think that
Ethiopian people do not have iron deficient. Unfortunately this is not true.
It is estimate that 36% of the developing world’s population suffers from anemia. Preschool
children in Africa, which includes Ethiopia, have some of the highest rates of anemia in the
world nearly 56%(United nations). In Ethiopia, the magnitude and importance of iron
deficiency anemia as a public health problem is still disputed. Some studies reported iron
deficiency anemia rates of less than 18% while others have reported rates of 25% and
above.
In several developing countries the intake of iron from diet is more than adequate. For
example, in parts of Ethiopia, the daily intake of iron is estimated to be between 180 and 500
mg day which is 1020 times the suggested daily requirement. This presumed high intake
is attributed to consumption of teff. In spite of this high intake of iron, some studies have
reported a high prevalence of anemia, even in teff-consuming communities (Zein et al, 1987,
& ministry of health Ethiopia, 1987). Therefore, the cause of iron deficiency in Ethiopia may
not be the inadequate dietary intake of iron. Other factors, ultimately related to poverty and
underdevelopment, might also play a role in iron deficiency anemia (Foy et al, 1960, Layrisse
et al, 1964). In such communities with an already high intake of iron, the conventional
supplementation of iron might not be effective or might even be harmful. Therefore, all
important risk factors have to be identified and their role in causing anemia evaluated. The
objective of this study is to identify these risk factors and assess their role in anemia.
The haematocrit results were available for 2.080 children. The mean haematocrit was 35,4 ±
4,8%. 42% of children were anemic, largely due to iron deficiendy. From those children
83,0% ate enjera in the 7 day’s before the specification of the blood values. Only 4% of the
study children had an iron intake of less than their daily Recommended Nutrient Intake (RNI).
[355]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
35
[356]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
36
4.3 Osteoporosis
Osteoporosis, or porous bone, is a disease characterized by low bone mass and structural
deterioration of bone tissue, leading to bone fragility and an increased risk of fractures of the
hip, spine, and wrist. Men as well as women are affected by osteoporosis, a disease that can
be prevented and treated.
Risk Factors
Certain risk factors are linked to the development of osteoporosis and contribute to an
individual’s likelihood of developing the disease. Many people with osteoporosis have several
risk factors, but others who develop the disease have no known risk factors. There are some
risk factors you cannot change, like; gender, age, ethnic and family history. Others risk
factors that you can change, like; intake of calcium and vitamin D, lifestyle, cigarette
smoking, intake of alcohol and the use of medication.
Prevention
To reach optimal peak bone mass and continue building new bone tissue as you age, there
are several factors you should consider. Enough intakes of calcium and vitamin D are
important. The use of cigarettes and alcohol should be minimized. Also doing exercises has
a positive influence, because it works as fall prevention.
Also the use of medications that cause the bone loss and other preventive medications will
prevent to osteoporosis.
Symptoms
Osteoporosis is often called the “silent disease because bone loss occurs without
symptoms. People that doesn’t have a periodical control may not know that they have
osteoporosis until their bones become so weak that a sudden strain, bump, or fall causes a
hip to fracture or a vertebra to collapse. Collapsed vertebrae may initially be felt or seen in
the form of severe back pain, loss of height, or spinal deformities such as kyphosis (severely
stooped posture).
Detection
Following a comprehensive medical assessment, your doctor may recommend that you have
your bone mass measured. A bone mineral density (BMD) test is the best way to determine
your bone health. BMD tests can identify osteoporosis, determine your risk for fractures
(broken bones), and measure your response to osteoporosis treatment.
Treatment
A comprehensive osteoporosis treatment program includes a focus on proper nutrition,
exercise, and safety issues to prevent falls that may result in fractures. In addition, the
physician may prescribe a medication to slow or stop bone loss, increase bone density, and
reduce fracture risk.
Teff maybe have a positive influence on osteoporosis, because it is high in calcium content,
which prevents osteoporosis. Calcium makes the bones stronger. There is done research to
found information about osteoporosis in relation with teff, but there is not found any relevant
information. (http://www.niams.nih.gov/Health_Info/Bone/Osteoporosis/overview.pdf
)
[357]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
37
4.4 Diabetes
Diabetes is a disorder of metabolism, the way our bodies use digested food for growth and
energy. Most of the food we eat is broken down into glucose, the form of sugar in the blood.
Glucose is the main source of fuel for the body. After digestion, glucose passes into the
bloodstream, where it is used by cells for growth and energy. For glucose to get into cells,
insulin must be present. Insulin is a hormone produced by the pancreas. When we eat, the
pancreas automatically produces the right amount of insulin to move glucose from blood into
our cells. In people with diabetes, however, the pancreas either produces little or no insulin,
or the cells do not respond appropriately to the insulin that is produced. Glucose builds up in
the blood, overflows into the urine, and passes out of the body in the urine. Thus, the body
loses its main source of fuel even though the blood contains large amounts of glucose.
What are the types of diabetes?
The three main types of diabetes are
Type 1 diabetes
Type 2 diabetes
Gestational diabetes
Type 1 Diabetes
Type 1 diabetes is an autoimmune disease. An autoimmune disease results when the body’s
system for fighting infection (the immune system) turns against a part of the body. In
diabetes, the immune system attacks and destroys the insulin-producing beta cells in the
pancreas. The pancreas then produces little or no insulin. A person who has type 1 diabetes
must take insulin daily to live.
It develops most often in children and young adults but can appear at any age. Symptoms of
type 1 diabetes usually develop over a short period, although beta cell destruction can begin
years earlier. Symptoms may include increased thirst and urination, constant hunger, weight
loss, blurred vision, and extreme fatigue. If not diagnosed and treated with insulin, a person
with type 1 diabetes can lapse into a life-threatening diabetic coma, also known as diabetic
ketoacidosis.
Type 2 Diabetes
The most common form of diabetes is type 2 diabetes. About 90 to 95 percent of people with
diabetes have type 2. This form of diabetes is most often associated with older age, obesity,
family history of diabetes, previous history of gestational diabetes, physical inactivity, and
certain ethnicities. About 80 percent of people with type 2 diabetes are overweight. Type 2
diabetes is increasingly being diagnosed in children and adolescents.
When type 2 diabetes is diagnosed, the pancreas is usually producing enough insulin, but for
unknown reasons the body cannot use the insulin effectively, a condition called insulin
resistance. After several years, insulin production decreases. The result is the same as for
type 1 diabetes. Glucose builds up in the blood and the body cannot make efficient use of its
main source of fuel. The symptoms of type 2 diabetes develop gradually. Their onset is not
as sudden as in type 1 diabetes. Symptoms may include fatigue, frequent urination,
increased thirst and hunger, weight loss, blurred vision, and slow healing of wounds or sores.
Some people have no symptoms.
Gestational Diabetes
Some women develop gestational diabetes late in pregnancy. Although this form of diabetes
usually disappears after the birth of the baby, women who have had gestational diabetes
have a 20 to 50 percent chance of developing type 2 diabetes within 5 to 10 years.
[358]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
38
Maintaining a reasonable body weight and being physically active may help prevent
development of type 2 diabetes
What is the impact of diabetes?
Diabetes is associated with long-term complications that affect almost every part of the body.
The disease often leads to blindness, heart and blood vessel disease, stroke, kidney failure,
amputations, and nerve damage. Uncontrolled diabetes can complicate pregnancy, and birth
defects are more common in babies born to women with diabetes.
Who gets diabetes?
Diabetes is not contagious.
Type 1 diabetes occurs equally among males and females but is more common in whites
than in non-whites. Data from the World Health Organization’s Multinational Project for
Childhood Diabetes indicate that type 1 diabetes is rare in most African, American Indian,
and Asian populations. However, some northern European countries, including Finland and
Sweden, have high rates of type 1 diabetes. The reasons for these differences are unknown.
How is diabetes managed?
Before the discovery of insulin in 1921, everyone with type 1 diabetes died within a few years
after diagnosis. Today, healthy eating, physical activity, and taking insulin are the basic
therapies for type 1 diabetes. The amount of insulin must be balanced with food intake and
daily activities. Blood glucose levels must be closely monitored through frequent blood
glucose checking. People with diabetes also monitor blood glucose levels several times a
year with a laboratory test called the A1C. Results of the A1C test reflect average blood
glucose over a 2- to 3-month period. Healthy eating, physical activity, and blood glucose
testing are the basic management tools for type 2 diabetes. In addition, many people with
type 2 diabetes require oral medication, insulin, or both to control their blood glucose levels.
Adults with diabetes are at high risk for cardiovascular disease (CVD). In fact, at least 65
percent of those with diabetes die from heart disease or stroke. Managing diabetes is more
than keeping blood glucose levels under control. It is also important to manage blood
pressure and cholesterol levels through healthy eating, physical activity, and use of
medications. People with diabetes must take responsibility for their day-to-day care. Much of
the daily care involves keeping blood glucose levels from going too low or too high. When
blood glucose levels drop too low a condition known as hypoglycaemiaa person can
become nervous, shaky, and confused. Judgment can be impaired, and if blood glucose falls
too low, fainting can occur. A person can also become ill if blood glucose levels raise too
high, a condition known as hyperglycemias. People with diabetes should see a health care
provider who will help them learn to manage their diabetes and who will monitor their
diabetes control. Most people with diabetes get care from primary care physicians from
internists, family practice doctors, or paediatricians.
(http://diabetes.niddk.nih.gov/dm/pubs/overview/DiabetesOverview.pdf
)
4.4.1. Glycemic index
The glycemic index (GI) is possibly a tool for diabetes patients to manage their blood sugar.
The GI is a ranking of carbohydrates on a scale from 0 to 100 according to the extent to
which they raise blood sugar levels after eating. Foods with a high GI are those which are
rapidly digested and absorbed and result in marked fluctuations in blood sugar levels. Low-
GI foods, by virtue of their slow digestion and absorption, produce gradual rises in blood
sugar and insulin levels, and have proven benefits for health. Low GI diets have been shown
to improve both glucose and lipid levels in people with diabetes (type 1 and type 2). They
have benefits for weight control because they help control appetite and delay hunger. Low GI
diets also reduce insulin levels and insulin resistance.
[359]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
39
[360]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
40
4.4.2. Obesity
Obesity, or overweight, refers to a person’s overall body weight and where the extra weight
comes from. Overweight is having extra body weight from muscle, bone, fat, and/or water.
Obesity is having a high amount of extra body fat. The most useful measure of overweight
and obesity is the body mass index (BMI). BMI is based on height and weight and is used for
adults, children, and teens. The BMI is the person’s weight in kg divided by the height
2
in
meters. The current value settings are as follows: a BMI of 18,5 to 25 may indicate optimal
weight, a BMI lower than 18,5 suggests the person is underweight while a number above 25
may indicate the person is overweight. A BMI below 17,5 may indicate the person has
anorexia or a related disorder. A number above 30 suggests the person is obese and over 40
the person in morbidly obese.( http://en.wikipedia.org/wiki/Body_mass_index)
Millions of people worldwide are overweight or obese. Being overweight or obese puts you at
risk for many diseases and conditions. The more body fat that you carry around and the
more you weigh, the more likely you are to develop heart disease, high blood pressure, type
2 diabetes, gallstones, breathing problems, and certain cancers.
A person’s weight is a result of many factors. These factors include environment, family
history and genetics, metabolism (the way your body changes food and oxygen into energy),
behaviour or habits, and other factors.
Certain things, like family history, can’t be changed. However, other things like a person’s
lifestyle habits can be changed. You can help prevent or treat overweight and obesity if you;
Follow a healthful diet, while keeping your calorie needs in mind
Are physically active
Limit the time you spend being physically inactive
Weight loss medicines and surgery also are options for some people who need to
lose weight if lifestyle changes don’t work.
Also for people who are overweight teff may have a good influence. Because of the low GI
people don’t get hunger quick after the meal.
(http://www.nhlbi.nih.gov/health/dci/Diseases/obe/obe_whatare.html
)
[361]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
41
5 Conclusion and discussion.
There are no doubts than teff appears as an interesting crop to be investigated. If it
represents 70% of the human nutrition in Ethiopia, and, if it is true that in this African country
the incidence of diseases as Celiac, anemia, osteoporosis and obesity is low, then it is
necessary to go deep in the relationship between this cereal and these diseases.
Teff is an interesting raw material for new food products development. Other than enjera, it is
possible, as shown in chapter 2.2 in this work, to elaborate all kind of bakery products,
fermented or non fermented beverages, porridges breakfast foods, and can be used to
control sauces and gravies texture. Food technologist, we can modified the medium of the
teff starch, and obtain processing behaviour according with our needs. It is enough to add
some chemical compounds as salts, acids and alkalis, to change some physical properties
as foaming capacity and protein solubility.
It is then, an interesting activity for scientist as nutritionists, chemists, food engineers and for
trade people, to re-discover this attractive little grain that is really ancient but new for
developed countries. It has a very small size but it contains a giant nutritional value.
Potential safety of teff for consumption by patients with celiac disease
The most important medical effect of teff is on celiac disease. If teff is totally gluten free (as
shown in some investigations recently made, as in one by Spaenij-Dekking et al, 2005 of the
Leiden University Medical Center), teff can be included on the diets of celiac patients, without
any risk. However, the authors of this work, we think that it is necessary to be careful,
because they are some research results that can give doubts about the safety to use teff as
an important ingredient of free gluten diets. For example, we use the following discussion,
found in a recently edited article: 61% of the CD patients with a gluten free diet (GFD)
which do not consume teff reporting symptoms of CD. This percentage was
comparable with the percentage of symptoms reported by teff users before teff was
introduced into their GFD. However, a significant reduction of symptoms from 58% to
17% was reported after adding teff to the GFD. The patients who get CD symptoms
after eating teff reported that the symptoms are fewer and significantly shorter in
duration than before”. The article was written by E. Hopman et al, 2007. The title of the
research is “Teff in the diet of celiac patients in The Netherlands”. We found in this
discussion terms that are relative, and shouldn’t be use in scientific reports, as “The
symptoms are fewer and significantly shorter in duration than before”. Additionally, in the
article written by Spaenij-Dekking et al, 2005, they said: In conclusion, within the limits of the
currently available
methods, no gluten or gluten homologues could be detected in
the teff
varieties tested. This finding indicates that teff may
be suitable for use in the diet of patients
with celiac disease.
Ultimately, the study of teff consumption by patients with celiac
disease in
remission will be needed in order to determine whether
teff is safe for these patients.
Some of the authors involved in this kind of discussion, they say that a lot of investigations
were subject to significant methodological limitations: small study populations, short periods
of investigation, and/or no available tests to measure the direct effect of oats and other
cereals on the intestinal mucosa. There is not a matter to have doubts that humans need to
continue with the research in this important topic.
About the contribution of teff, because its high iron content, to the low incidence of anemia
between the Ethiopian population, we have a lot of doubts too. We firstly accepted both of
the statements cited below: High iron teff content, and low anemia incidence in Ethiopia. But
analyzing all the references obtained our criteria changed, and the doubts take place in our
mind. We expose immediately some extracts of articles, responsible of our doubts:
[362]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
42
[363]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
43
6 Recommendations.
When the nutrition of a so important population is involved, as this of the Ethiopia country,
the institutions as WHO, FAO and a lot of associations as The Celiac Sprue Association, the
Finish Celiac Society, The Celiac Disease Foundation and others, they should put together
all their resources to develop a big project. This has to be an interdisciplinary project, with the
participation of institutes and universities of different countries. It is necessary to include the
agronomical and yields aspects, varieties selection, social benefits, teff flour production new
products development, and food safety system implementation.
It is necessary to begin doing an objective neutral chemical characterisation, to be sure
about micro chemical teff composition, because they are a lot of doubts about this, an
secondly, we recommend to investigate about the real anemia incidence in Ethiopia.
In order to improve the consumption of enjera, and the fermentation step in the manufacture
processing, it is necessary to investigate details about this practice, the changes involved,
the participating microorganisms and to standardize a procedure (protocol). It is necessary to
be sure, and this is a topic related with microbiological, chemistry and food safety aspects, of
the absence of mycotoxins. This dangerous substance has been found in teff grain and teff
products by different authors.
It is not out of matter, to include in the project a research about teff starch modifications, in
order to increase their properties to be used in the bakery industry. This topic involves Food
Technology, Food Physics, Food Chemistry and Food Safety.
It is possible that the project design was made at Van Hall Larenstein part of Wageningen
University, but it is necessary to begin to include and to be sure of the associations,
universities and institutions as these mentioned below.
[364]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
44
7 References
7.1 Articles
ADISH, A.A., et al. “Risk factors for iron deficiency anaemia in preschool children in northern
Ethiopia” In Public Health Nutrition: 2(3), 243252
AROGUNDADE, L. "Functional characterization of tef (Eragrostis tef) protein concentrate;
Influence of altered chemical environment on its gelation foaming and water hydration
properties" In: Food Hydrocolloids 20 (2006) 831838.
ASHENAFI, M."Microbial flora and some chemical properties of ersho, a starter for teff
(Eragrostis tef) fermentation". In:World Journal of Microbiology & Biotechnology 10, 69-
73.
AYALEW, A. et.al. " Natural Occurrence of Mycotoxins in Staple Cereals from Ethiopia" In:
Mycopathologia (2006) 162: 5763.
BAI, G. et al."Genetic diversity in tef [Eragrostis tef (Zucc) Trotter] and its relatives as
revealed by Random Amplified Polymorphic DNAs" In: Euphytica 112: 1522, 2000.
BALCHA, A et al."Genetic variation in nitrogen-use efficiency of tef" In: J. Plant Nutr. Soil Sci.
2006, 169, 704710.
BELAY, G. "Highly client-oriented breeding with farmer participation in the Ethiopian cereal
tef [Eragrostis tef (Zucc.) Trotter]". In: African Journal of Agricultural Research Vol. 3 (1),
pp. 022-028, January 2008
BELAY,G et al. "Participatory variety selection in the tthiopian cereal teff (Etagrostis Teff) " In:
Expl. Agric. (2005), volume 42, pp. 91101.
BULTOSA, G. and TAYLOR, J.R.N. "Chemical and Physical Characterisation of Grain Tef
[Eragrostis tef (Zucc.) Trotter] Starch Granule Composition" In:Starch/Stärke 55 (2003)
304312.
BULTOSA, G and TAYLOR, G. "Paste and Gel Properties and In Vitro Digestibility of Tef
[Eragrostis tef (Zucc.) Trotter] Starch" In: Starch/Stärke 56 (2004) 2028.
BULTOSA, G.et.al. " Physico-chemical Characterization of Grain Tef [Eragrostis tef (Zucc.)
Trotter] Starch" In:Starch/Stärke 54 (2002) 461468.
CABRERA, F. et al. "Transglutaminase Treatment of Wheat and Maize Prolamins of Bread
Increases the Serum IgA Reactivity of Celiac Disease Patients" In: J. Agric. Food Chem.
2008, 56, 13871391.
HOPMAN, E. et al. “Tef in the diet of celiac patients in The NetherlandsIn: Scandinavian
Journal of Gastroenterology 43:3, 277 282
MENGISTU, A.et al. "Effect of supplementation of tef (Eragrostis tef) straw with different
levels of noug (Guizotia abyssinica) meal on worked Arsi oxen (Bos indicus)". In:Trop.
Sci. 2007, 47(1), 4951.
[365]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
45
MORÓN, B. et al. "Sensitive detection of cereal fractions that are toxic to celiac disease
patients by using monoclonal antibodies to a main immunogenic wheat peptide" In: Am J
Clin Nutr .2008;87:405414.
RAILEY, K. “Whole Grains: Teff (Eragrostis)” http://chetday.com/teff.html
SHEKEEB, S. and PITTWELL, L. R. "IRON CONTENT OF TEFF (Eragrostis abyssinica)" In:
J. Sci. Fd Agric., 1968, Vol. 19, August.
SPAENIJ/DEKKING, et.al. “The Ethiopian Cereal Tef in celiac Disease” . In: The New
England Journal of Medecine. 2005 ; 17:353:1748-1749.
THOMPSON, T. "Case Problem nr1 Questions Regarding the Acceptability of Buckwheat,
Amaranth, Quinoa, and Oats from a Patient with Celiac Disease" In: Solution Center. May
2001, Volume 101, Number 5.
TULEMA, B.et.al. "Availability of organic nutrient sources and their effects on yield and
nutrient recovery of tef [Eragrostis tef (Zucc.) Trotter] and on soil properties" In:J. Plant
Nutr. Soil Sci. 2007, 170, 543550.
TURKENSTEEN. H. ″The Netherlands company Soil and Crop S&C says it is wrongly
accused of bio-piracy to patent Ethiopian grain
Teff”.2008.http://www.tigraionline.com/sandc_responds.html.
WIESER, H. and KOEHLER, P. "Celiac disease; In vitro and in vivo safety and palatability of
wheat-free sorghum food products" In: Cereal Chem. 85(1): 2008, 113.
WONDIMU, B."Intercropping tef and sunfl ower in semi-arid areas of Welo, Ethiopia". In:
Trop. Sci. 2007, 47(1), 1621.
YETNEBERK, S.et.al."Improving the quality of sorghum enjera by decortication and
compositing with tef" In: J Sci Food Agric 85:12521258 (2005).
YU, J.K. et al, "A genetic linkage map for tef (Eragrostis tef (Zucc.) Trotter)." In: Theor Appl
Genet (2006) 113:10931102.
YU, J.K. et al, "Expressed sequence tag analysis in tef (Eragrostis tef (Zucc) Trotter)"
In:Genome 49: 365372 (2006).
YU, J.K. et al, " QTL mapping of agronomic traits in tef [Eragrostis tef (Zucc). Trotter]"
In:BMC Plant Biology 2007, 7:30.
ZEDWU, A.D."Aerodynamic properties of tef grain and straw material" In: B I OSYSTEMS
ENGI N E E R I N G 98 (2007 ) 304 309.
ZEWDU, A.D. and SOLOMON, W.K."Moisture-Dependent Physical Properties of Tef Seed".
In: Biosystems Engineering (2007) 96 (1), 5763.
[366]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
46
7.2 Internet sites
http://www.soilandcrop.com/index.php?lang=eng
www.cd3wd.com/.../X0027S/ES/X0027S04.HTM
http://www.soilandcrop.com/images/Column%20Jos%20over%20Teff.jpg
www.hort.purdue.edu/.../eragrostis_tef_nex.html
http://images.google.com/imgres?imgurl=http://www.hort.purdue.edu/newcrop/pics/teff_seeds.gif
&imgrefurl=http://www.hort.purdue.edu/newcrop/nexus/eragrostis_tef_nex.html&h=120&w=189&s
z=19&hl=es&start=65&tbnid=mAxLBxfWwR0EwM:&tbnh=65&tbnw=103&prev=/images%3Fq%3D
teff%26start%3D63%26gbv%3D2%26ndsp%3D21%26hl%3Des%26sa%3DN
commons.wikimedia.org/wiki/Image:Eragrostis_t
fooditudeblog.blogspot.com/
www.dkimages.com/.../Ethiopia/Ethiopia-19.html
www.fao.org/.../compend/img/ch16/ph02509.htm
http://images.google.nl/images?hl=en&q=Rapid+Visco+Analyzer&btnG=Search+Images&gbv=2
http://images.google.com/images?gbv=2&ndsp=21&hl=es&q=teff&start=42&sa=N
recipesfrommillermanor.blogspot.com/2007/11/t...
http://www.bobsredmill.com/recipe/ingredient.php?pid=386
http://www.tigraionline.com/sandc_responds.html
.
http://www.nlm.nih.gov/medlineplus/obesity.html
http://www.nhlbi.nih.gov/health/dci/Diseases/obe/obe_whatare.html
http://content.answers.com/main/content/wp/en-commons/thumb/c/c8/288px-
Differential_scanning_calorimeter.jpg
http://en.wikipedia.org/wiki/Body_mass_index
http://www.glycemicindex.com/
http://www.nlm.nih.gov/medlineplus/osteoporosis.html
http://www.nlm.nih.gov/medlineplus/anemia.html
http://www.nhlbi.nih.gov/health/dci/Diseases/anemia/anemia_whatis.html
http://www.jgi.doe.gov/education/bioenergy/Pichia_stipitis_JGI.jpg
http://images.google.cl/images?hl=es&q=enjera&btnG=Buscar+im%C3%A1genes&gbv=2
[367]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
The literature research to the cereal teff (Eragrostis Tef) _________
Patricia Arguedas & Lisette van Ekris
47
http://images.google.cl/imgres?imgurl=http://www.botanypictures.com/plantimages/eragrostis%25
20tef%252003%2520(teff).JPG&imgrefurl=http://www.botanypictures.com/plantimages/&h=1984&
w=1323&sz=438&hl=es&start=11&tbnid=qvzTY9FB
TaM:&tbnh=150&tbnw=100&prev=/images%3Fq%3Dteff%26gbv%3D2%26hl%3Des%26sa%3D
G
www.botanypictures.com/plant
images/eragrostis.
http://fotos.mundorecetas.net/albums/userpics/10267/Harina_teff_n.jpg
www.globalnomad.net/.../print_quick%20facts.htm
http://www.niams.nih.gov/Health_Info/Bone/Osteoporosis/overview.pdf
http://diabetes.niddk.nih.gov/dm/pubs/overview/DiabetesOverview.pdf
http://www.jgi.doe.gov/education/bioenergy/Pichia_stipitis_JGI.jpg
http://images.google.cl/imgres?imgurl=http://lissanonline.com/blog/wp-
content/uploads/2007/09/teff05.jpg&imgrefurl=http://lissanonline.com/blog/%3Fm%3D200801&h=
240&w=320&sz=64&hl=es&start=21&tbnid=Mph00Yejpp9mdM:&tbnh=89&tbnw=118&prev=/imag
es%3Fq%3Dteff%26gbv%3D2%26hl%3Des%26sa%3DG
[369]
TRANSFORMACIÓN GENÉTICA DE PLANTAS MEDIADA POR
Agrobacterium tumefaciens
María Camila Balcázar
1,2
, Elizabeth Hodson
2
y Wilson Terán
2
1
Departamento de Biología. Facultad de Ciencias y Tecnología. Universidad Mayor de San
Simón (UMSS). Calle Sucre y parque la Torre Cochabamba.
2
Unidad de Biotecnología Vegetal. Departamento de Biología. Universidad Javeriana.
Laboratorio 206A -Edificio 54. Carrera 7 # 43-82 Bogotá.
Palabras clave: Transformación genética; Agrobacterium tumefaciens; Plásmido pBI121; gusA;
Callogénesis; Organogénesis.
RESUMEN: La transformación genética en tubérculos y raíces de interés alimentario como la
papa (Solanum tuberosum L.) y la yuca (Manihot esculenta Crantz) ha cobrado un gran
interés en los últimos años debido a la gran importancia de estos cultivos para la alimentación
mundial, particularmente en las regiones más pobladas y pobres de mundo. Se han venido
desarrollando varios protocolos de transformación genética en estas dos especies con el fin de
transfererir genes de resistencia a patógenos fúngicos y víricos, genes de tolerancia a sequía y
salinidad, o genes metabólicos con fines de biofortificación. El presente trabajo pretende
evaluar y estandarizar protocolos de transformación genética mediada por Agrobacterium
tumefaciens para estas dos especies, que permitan obtener plantas transgénicas con una gran
eficiencia y rapidez (dos a tres meses), de manera que puedan ser aplicados rutinariamente
en futuros proyectos de transformación genética en estos importantes cultivos alimentarios.
ABTRACT: Genetic transformation of important tuber and root food crops such as potato
(Solanum tuberosum L.) and cassava (Manihot esculenta Crantz) has gain interest in the past
few years because of the importance of those crops for food security, particularly in the
poorest and more populated regions of the world. Various transformation protocols have
been developed for both species, in order to transfer either fungal or viral pathogen resistance
genes, drought and salinity tolerance genes, or metabolic genes for biofortification purposes.
The present work is aimed to evaluate and standardise Agrobacterium tumefaciens mediated
transformation protocols for both species in order to obtain transgenic plants with high
efficiency and shortened times (two to three months), that could be routinely used in future
projects of genetic transformation for genetic improvement of those important food crops.
INTRODUCCIÓN
La ingeniería genética vegetal representa un importante hito en la ciencia agrícola
moderna. El advenimiento de la tecnología de ADN recombinante a principios de los 70 y
el posterior desarrollo de técnicas de transferencia de ADN proporciono grandes
oportunidades para la inserción de genes extraños tanto de organismos procariotas como
eucariotas en el genoma de plantas de importancia agrícola, permitiendo modificar y
aumentar el pool de las variedades disponibles en poco tiempo [1,2], sin alterar el fondo
genético de las mismas. Este hecho es de suma importancia ya que el objetivo de las
diferentes técnicas de mejoramiento es la incorporación acumulativa de nuevas
características benéficas, sin perder las mejoras logradas previamente [3].
Las plantas transgénicas que expresan rasgos nuevos ahora están siendo
ampliamente cultivadas para la mejora de su rendimiento, calidad y otras característica de
[370]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
valor añadido [1]. La producción de plantas transgénicas requiere la transferencia del
material genético dentro de la célula vegetal, la integración estable del ADN introducido en
el genoma de la planta y la regeneración de todas las plantas de manera que el gen
introducido sea mantenido establemente en las subsecuentes generaciones, para esto es
necesario que las lulas que han recibido el transgen en su genoma tengan la capacidad de
regenerar en plantas fértiles [3,4,5]. Finalmente es también necesario evidencia física de la
integración del T-DNA, la expresión de los genes introducidos y una transmisión estable a
las generaciones futuras [5,6]. Las plantas transgénicas que transmiten el rasgo introducido
a la progenie se obtienen utilizando diversos métodos de inserción de ADN, tales como la
bio-balística, electroporación y la permeabilización de protoplastos por medio de la
aplicación de polietilenglicol [7,8]. Sin embargo, el método más comúnmente utilizado para
obtener plantas transgénicas es el de la transformación mediada por Agrobacterium
tumefaciens. Agrobacterium puede transferir ADN a un amplio grupo de organismos
(numerosas especies de angiospermas dicotiledóneas y monocotiledoneas, gimnospermas y
hongos, incluyendo levaduras, ascomicetes y basidiomicetes). Recientemente, se reportó la
transferencia de ADN a células humanas [7].
NATURALEZA DE LA INTERACCIÓN AGROBACTERIUM-PLANTA
A. tumefaciens, y A. rhizogenes, miembros del género Agrobacterium son bacterias
Gram-negativas aeróbicas obligadas que viven en el suelo. Ellas son capaces de desarrollar
un crecimiento saprofítico o parasítico al infectar una gran variedad de especies de
Dicotiledoneas a través de heridas causadas en las plantas, por diferentes agentes externos.
A. tumefaciens induce la formación de tumores en el tallo, enfermedad conocida como
“agalla de corona”, mientras que A. rhizogenes induce una proliferación excesiva de raíces,
causando así la enfermedad conocida como “raíz en cabellera” [3,5,8,9].
La «agalla de corona» es una consecuencia de un proceso natural de transferencia de
DNA de la bacteria a la célula vegetal, semejante a la conjugación bacteriana: un fragmento
de DNA plasmídico, denominado T-DNA (transferred DNA), es transferido a la célula
vegetal y es integrado en su genoma [8]. Este proceso de transformación es estimulado por
compuestos exudados de células vegetales dañadas [9]. El T-DNA corresponde a un
segmento definido de un plásmido de alto peso molecular (150-200 Kb) denominado
plásmido Ti (tumour-inducing) en A. tumefaciens y Ri (root inducing) en A. rhizogenes. El
T-DNA está delimitado por secuencias directamente repetidas de 25 pb conocidas como
borde derecho y borde izquierdo [8,3].
El paso inicial en el proceso de infección es el ataque de A. tumefaciens a las células
de la planta a través de una herida. En esta etapa la bacteria produce una red de fibras de
celulosa que conectan fuertemente a la bacteria con la superficie de la célula vegetal, etapa
en la que están involucrados genes cromosómicos (chvA, chv B, chv E, cel, psc A y att)
[10,3].
Este proceso de infección se produce debido a que la bacteria responde a ciertos
componentes fenólicos de la planta como la acetosiringona e hidroxiacetosiringona, los
cuales son liberados en las heridas de plantas susceptibles. Estas pequeñas moléculas,
actúan induciendo los genes de virulencia (vir) que son codificados en el plásmido Ti [10].
Los genes vir están localizados en una región de 35-kb en el plásmido Ti, situados
fuera de la región del T-DNA [11]. Existen 20 genes vir organizados en 8 unidades
transcripcionales denominadas virAvirH, que son co-reguladas formando un regulón.
Solamente cuatro loci (virA, virB, virD y virG) son absolutamente esenciales para la
[371]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
tumorogénesis, mientras que los otros afectan la eficiencia de la transferencia y el espectro
de hospederos. El locus virA codifica una proteína de membrana que percibe la presencia
de los metabolitos liberados por las células de la planta en respuesta a las heridas. VirA
fosforila la proteína codificada por el gen virG que, entonces, activa a los demás genes vir.
La proteína VirD2 (una endonucleasa), reconoce y corta los bordes derecho e izquierdo que
delimitan el T-DNA y se une covalentemente al extremo de la molécula de cadena
simple de T-DNA. La proteína VirE2 se une entonces a la superficie da la unidad T-DNA-
VirD2, protegiéndola de nucleasas y formando el llamado complejo T. El paso del
complejo T por la membrana bacteriana y por la pared celular de la célula vegetal es
garantizada por proteínas codificadas por el locus virB. El complejo-T es transferido al
núcleo a través de un poro de la membrana nuclear. En el núcleo ocurre la integración del
T-DNA al genoma de la célula vegetal [8].
Durante la inserción del T-DNA en el cromosoma de la planta, son también
producidas pequeñas delecciones del DNA cromosómico en el sitio de unión entre el T-
DNA y el DNA cromosómico de la planta. En tanto, mientras la inserción del T-DNA en el
DNA de la planta ocurre en sitios al azar, los bordes del T-DNA muestran homología con el
DNA de la planta en el sitio de inserción [10].
Una vez integrado en el genoma celular, ocurre la transcripción de genes presentes
en el T-DNA y la consecuente traducción de enzimas que, a su vez, llevan a cabo la síntesis
de dos productos principales: hormonas vegetales (auxinas y citoquininas) y opinas. Las
auxinas y citoquininas regulan el crecimiento y desarrollo celular de la planta, por lo tanto,
la síntesis de ambas desencadena numerosas divisiones celulares, y el crecimiento de tejido
en forma de tumor como consecuencia del aumento de las cantidades de auxina y
citoquinina endógenas, generado por la síntesis de sustancias de las células transformadas
[8,10]. Las opinas son formas modificadas de aminoácidos o azúcares, formadas también
como consecuencia de la activación de genes localizados en el T-DNA. Las opinas son
sintetizadas junto con la agalla de corona y posteriormente secretadas. Pueden ser usadas
como fuente de carbono y algunas veces también como fuente de nitrógeno. Los genes para
el catabolismo de las opinas se encuentran en el plásmido Ti y no es parte de la región del
T-DNA [10].
El tipo de opina formado depende de la cepa bacteriana infectante. Más de 20
diferentes opinas ya fueron identificadas. Los diversos tipos de plásmidos Ti son
clasificados en base a la opina mayormente sintetizada en los tejidos vegetales y
metabolizada por la bacteria inductora [8].
MANIPULACIÓN GENÉTICA CON Agrobacterium tumefaciens
La patogénesis de plantas desarrollada por las especies del género Agrobacterium, es
un hecho extraordinario de la naturaleza, ya que permite la transferencia, integración y
expresión de un fragmento de DNA (T-DNA), de origen procariota en células eucariotas.
Este mecanismo puede ser aprovechado para la introducción de genes de interés en las
plantas, ya que los genes que codifican la síntesis de hormonas vegetales y opinas, que a su
vez no son necesarios para la transferencia del T-DNA, pueden ser reemplazados por los
genes de interés, sin alterar el proceso de transferencia. Gracias a esto, y al hecho de que los
genes vir no necesitan estar en el mismo plásmido que el T-DNA para ser funcionales, y
que el plásmido Ti tiene un tamaño de 200 kilobases, es que se han desarrollado dos
[372]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
estrategias diferentes para la transferencia de genes mediada por Agrobacterium. Una que
utiliza vectores co-integrados y la otra que utiliza vectores binarios [3,11].
Los vectores co-integrados consisten en un plásmido de E. coli, donde se ha
introducido el gen de interés; esta secuencia es posteriormente integrada al plásmido Ti
desarmado entre los bordes derecho e izquierdo del T-DNA. Al transferir el plásmido de E.
coli a Agrobacterium el gen insertado queda entre los bordes del T-DNA por
recombinación homóloga. El resultado es un plásmido en donde el material genético nuevo
se sitúa en cis con respecto a los genes vir en el mismo plásmido. En los vectores binarios
la región vir y el T-DNA residen en plásmidos separados o en dos replicones diferentes
dentro de Agrobacterium y actúan en trans uno con respecto al otro; la región vir se
encuentra en el plásmido Ti desarmado de la cepa de A. tumefaciens y el T-DNA se
encentra en el otro plásmido vector. El plásmido junto con el T-DNA constituye el vector
binario mientras que el plásmido que contiene los genes vir se conoce como ayudador (vir
helper). El plásmido ayudador con los genes vir generalmente posee una completa o parcial
delección de la región del T-DNA confiriéndoles el carácter de cepas no virulentas a las
cepas de Agrobacterium que los llevan. Actualmente este tipo de vectores es el más
utilizado ya que su construcción es más sencilla [12,13].
Tanto los vectores co-integrados como los vectores binarios contienen los siguientes
elementos básicos:
Un origen de replicación que permite que el plásmido sea replicado en E. coli. En los
vectores binarios, se añade también un origen de replicación que funciona en A.
tumefaciens, mientras que en los vectores co-integrados no, con objeto de favorecer la
recombinación homóloga [10].
El borde derecho del T-DNA. Esta región es absolutamente necesaria para la
integración del T-DNA en el DNA de la célula vegetal. Sin embargo muchos vectores
contienen tanto el borde derecho como el izquierdo [10].
Secuencias promotoras, que son regiones del DNA ubicadas corriente arriba de regiones
codificantes, las cuales contienen secuencias específicas para el reconocimiento y unión
de proteínas involucradas en el control del nivel y patrón de la expresión génica. Se han
identificado promotores tejido-específicos, de expresión temporal y de expresión
constitutiva; siendo los últimos los más utilizados actualmente ya que presentan altos
niveles de transcripción y facilitan la expresión del gen en cualquier tipo de tejido. Tal
es el caso del promotor CaMV 35S (del virus del Mosaico de la Coliflor) [11].
Secuencias terminadoras, las cuales actúa como señalizadoras para la detención del
proceso de transcripción. La secuencia de terminación más utilizada es la proveniente
del gen de la nopalina sintetasa (NOS) de A. tumefaciens [13].
Entre las secuencias promotoras y terminadores reside el transgen de interés, pero
también otros genes como los genes de selección de la planta transgénica y en algunos
casos genes reporteros.
GENES MARCADORES
Considerando que un porcentaje relativamente pequeño de células se torna
establemente trasformada con el empleo de cualquier método de introducción de DNA
exógeno en las células vegetales, es esencial poder detectar el DNA foráneo que ha sido
[373]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
integrado en el DNA genómico de la planta, de modo que aquellas células que han sido
transformadas puedan ser identificadas [10,8]. Con los genes marcadores es posible
reconocer y seleccionar las células que han sido trasformadas, estos son co-transformados
con los genes de interés que queremos expresar en la planta. Hay dos tipos de marcadores,
de selección e informadores o reporteros [13,14].
El gen marcador de selección, otorga una importante ventaja a las células
transgénicas que lo expresan, ya que les permite crecer en presencia de un agente selectivo.
Esto se logra ya sea por medio de una selección negativa o una selección positiva. En la
selección negativa, el gen marcador de selección codifica una proteína que transfiere a las
células que lo expresan resistencia a agentes fitotóxicos como antibióticos o herbicidas,
permitiéndoles crecer y desarrollarse en presencia de los mismos, mientras que las células
que no lo expresan (no transformadas), no pueden hacerlo. En el caso de la selección
positiva, la ventaja está dada por el uso diferencial de un sustrato. Un ejemplo de este caso
es el del gen manA de E. coli el cual codifica una enzima que permite a las células que lo
expresan utilizar la manosa como fuente de carbono. Sin embargo cabe destacar que
algunas especies pueden poseer resistencia a los agentes selectivos mencionados, por tanto
es importante evaluar este aspecto antes de elegir el gen de selección, el agente selectivo y
las concentraciones del mismo, antes de ser utilizados [3].
Dentro de estos genes el más utilizado es el gen de la neomicina fosfotransferasa
(nptII) que confiere resistencia a antibióticos aminoglicósidicos, como la kanamicina,
mediante la fosforilación del mismo. Son pocas las excepciones en las que se ha utilizado el
gen de resistencia a higromicina (bpt) o el gen de resistencia al herbicida “basta” [15,16].
Como la mayoría de los genes de selección son de origen procariótico, es necesario poner
bajo el control de la planta señales de regulación transcripcional, incluyendo tanto las
secuencias promotoras como las de terminación, para asegurar su efectiva expresión en las
células vegetales [10].
Adicionalmente, los genes marcadores reporteros o informadores dan a la célula que
ha incorporado el gen una característica que la hace distinguible de las demás. Estos genes
codifican proteínas que producen un fenotipo característico de fácil y rápida observación.
Los más utilizados son genes que codifican enzimas que hidrolizan sustratos cromogénicos,
fluorogénicos, o emisores de luz, de tal manera que se logra identificar a las células
transformadas al añadir el sustrato adecuado [3].
El gen reportero más utilizado es el gen uidA o gusA aislado de E. coli y que
codifica la enzima ß-glucuronidasa (GUS). Esta enzima es una hidrolasa ácida que
hidroliza una amplia variedad de ß-glucurónidos. La presencia de GUS puede ser detectada
histoquímicamente adicionándose una sustrato cromogénico, como el ácido 5-bromo-4-
cloro-3-indol-ß-D-glucorónido (X-Gluc), el cual en presencia de la enzima, forma un
precipitado azul, resultado de la dimerización del producto de hidrólisis de X-Gluc. [8].
Con esta enzima también se puede usar el sustrato 4-metil-umbeliferil-ß-D-glucorónido (4-
MUG) el cual al ser hidrolizado forma un compuesto fluorescente, 4-metilumbeliferona
(MU), que se puede medir por técnicas fluorimétricas [8,17].
La desventaja en la utilización del gen gusA es la consecuente muerte de las células
vegetales en el momento del análisis o tinción. En este sentido, como alternativa, se vienen
utilizando otros genes reporteros, como los genes lux y gfp, cuyos productos pueden ser
[374]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
identificados mediante un análisis no deletéreo. Los genes lux codifican la enzima
luciferasa de Photinus pyralis (luciérnaga). La luciferasa cataliza la reacción de oxidación
de luciferina, en presencia de ATP, produciendo una luz verde-amarilla. El gen gfp, a su
vez, fue aislado de Aequorea victoria (medusa) y codifica la proteína de fluorescencia
verde (green fluorescent protein, GFP). La GFP absorbe luz ultravioleta o luz azul,
haciendo que las células que expresan este gen, emitan una luz verde fluorescente [8,18].
REGENERACIÓN DE TEJIDOS VEGETALES
Uno de los elementos básicos requeridos para el éxito en procedimientos de
transformación genética de plantas es un sistema de cultivo de tejidos que permita
regenerar plantas completas y fértiles, a partir de células transformadas con el gen de
interés, en medios de cultivo selectivos. Esto se logra gracias a la propiedad de totipotencia
de las células y tejidos vegetales, [3], es decir la capacidad que tienen de crecer, dividirse y
finalmente diferenciarse para formar una planta completa [19].
Antes de que una célula vegetal sea capaz de expresar su propiedad de totipotencia,
es necesario que primero pase por un proceso de desdiferienciación, es decir una reversión
del estado diferenciado al meristemático, y posteriormente una nueva diferenciación que la
capacite para expresar su potencial organogénico. Este proceso denominado “organogénesis
somática”, puede realizarse de dos maneras diferentes, indirecta cuando se realiza con una
callogénesis intermedia, o directa cuando se realiza sin callogénesis [20].
El cultivo in vitro de protoplastos con concentraciones definidas de las fitohormonas
axina y citoquinina, puede derivar en la formación de una masa de células indiferenciadas
conocidas como callo. El callo con una transferencia regular a nuevo medio sólido y fresco,
puede ser cultivado de manera indefinida, o puede ser cultivado bajo condiciones
hormonales que induzcan la formación de brotes. Los brotes extraídos de los callos pueden
ser cultivados en medio fresco e inducidos a iniciar la formación de raíces, y finalmente
formar una planta completa. Aunque este procedimiento general es válido para la mayoría
de las plantas, las condiciones hormonales varían entre especies y deben ser determinadas
empíricamente, [19] esto se debe a que existe una importante influencia del genotipo, en la
respuesta a diferentes condiciones del cultivo in vitro [3].
OBJETIVOS
OBJETIVO GENERAL
Estandarizar un protocolo de transformación genética de papa (Solanum tuberosum
L.) y yuca (Manihot esculenta Crantz.) mediada por Agrobacterium tumefaciens.
OBJETIVOS ESPECÍFICOS
Transformar las cepas de Agrobacterium tumefaciens GV2260 y LBA4404 con el
plásmido binario pBI121.
Aplicar y evaluar dos protocolos de transformación de papa y yuca con dos cepas
distintas de A. tumefaciens portadoras del plásmido binario pBI121.
Obtener callos y plántulas de papa y yuca transformadas.
Verificar la inserción y expresión del gen reportero gusA en los tejidos de las plantas
transgénicas obtenidas.
METODOLOGÍA
MATERIAL VEGETAL
[375]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
Se trabajó con plántulas de yuca (Manihot esculenta Crantz) y papa (Solanum
tuberosum L, variedad Diacol Capiro.), las cuales provienen de plantas establecidas in vitro
a partir de segmentos nodales, en medio Murashige & Skoog (MS), a 21 ± 2°C de
temperatura, con un fotoperiodo de 16 horas luz/8 horas oscuridad y una humedad relativa
del 70%.
Estas plántulas son parte del material establecido en el laboratorio de cultivo de
tejidos de la Unidad de Biotecnología Vegetal de la Pontificia Universidad Javeriana
.
CULTIVO Y TRANSFORMACIÓN DE CEPAS DE Agrobacterium tumefaciens
Para el proceso de infección y transformación se utilizaron las cepas de A.
tumefaciens GV2260 (con resistencia a rifampicina y carbenicilina) y LBA4404 (con
resistencia a estreptomicina). Estas cepas fueron transformadas con el plásmido binario
pBI121 por el método de electroporación.
El plásmido pB121, tiene un tamaño de 12.8 kb, de acuerdo con su mapa de
construcción (Jefferson, et al.1987) [17]. El T-DNA se inicia con la secuencia
correspondiente al borde derecho, seguido del promotor NOS (nopaline synthase), luego el
gen nptII (neomycin phosphotransferase II) que confiere resistencia a varios antibióticos
aminoglicósidos incluyendo kanamicina, neomicina y G418, este es seguido por la
secuencia terminadora NOS. A continuación esta la secuencia promotora CaMV 35S
proveniente del virus del mosaico de la coliflor, la región codificante GUS -
Glucoronidasa), que constituye el gen reportero, nuevamente la secuencia terminadora NOS
y finalmente la secuencia correspondiente al borde izquierdo. Entre los diferentes
constituyentes se localizan varios sitios de corte con enzimas de restricción, como EcoRI y
HindIII.
El plásmido pBI121 fue aislado de una cepa de Escherichia coli DH5α previamente
transformadas, cultivada en medio LB líquido con kanamicina (50 µg/ml), durante toda la
noche a 37 °C. Posteriormente se realizó la extracción del plásmido haciendo uso del kit de
purificación de plásmidos Quantium Prep. Plasmid Miniprep Kit. de BIO RAD. Una vez
purificado el plásmido se procedió a su cuantificación por espectrofotometría haciendo uso
del espectrofotómetro Nano Drop
TM
1000.
Para verificar el tamaño del plásmido se realizaron dos análisis de restricción, el
primero con la enzima EcoRI y el segundo con las enzimas EcoRI y HindIII. El producto
de estas reacciones se visualizó en gel de agarosa al 0.8% (p/v), teñido con bromuro de
etidio (0.5 µg/ml).
Finalmente se procedió a la transformación de las cepas de A .tumefaciens GV2260
y LBA4404 mediante electroporación. Se cultivaron estas bacterias en medio LB líquido
con los antibióticos de selección respectivos durante toda la noche a 27 °C y en completa
oscuridad. Posteriormente se realizaron tres lavados de las bacterias con agua destilada
estéril a 4°C. Luego de los lavados, las bacterias se resuspendieron en 250 ml de agua
destilada estéril. Para la electroporación, se mezclaron 40 µl de la suspensión bacteriana
con 3.5 µl del plásmido (500 ng) purificado entre los dos electrodos de la celda de
electroporación. Se dejo reposar por cinco minutos y finalmente se electroporó con un
pulso de 1.8 kV. Las bacterias electroporadas se pusieron a crecer en 1 ml de medio LB
durante 1 h a 27°C y se sembraron alícuotas de 100 µl por agotamiento en medio LB sólido
[376]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
suplementado con Kanamicina (50 µg/ml) y los respectivos antibióticos de selección de
cada cepa, a 27°C, por 3 días y en completa oscuridad.
TRANSFORMACIÓN Y REGENERACIÓN DE PLANTAS
CORTE DE EXPLANTES FOLIARES
Para obtener los explantes a infectar, se tomaron hojas jóvenes y saludables de yuca
(M. esculenta) y papa (S. Tuberosum L) a las que se les retiró el pecíolo y 1 mm de la base.
Luego, con el objetivo de producir heridas en las hojas, se realizaron varios cortes sobre la
nervadura central dejando un espacio de aproximadamente 1-2 mm entre cada uno.
INFECCIÓN DE EXPLANTES FOLIARES
Para la el proceso de infección se probaron 2 protocolos diferentes para M. esculenta
y S. tuberosum L.
La infección de explantes foliares de M. esculenta se realizó con las dos cepas de A.
tumefaciens (GV2260 y LBA4404), transformadas previamente con el plásmido pBI121.
Estas bacterias fueron cultivadas toda la noche en medio LB líquido con los antibióticos de
selección respectivos (Rifampicina, 100 µg/ml; Kanamicina, 50 µg/ml; Carbenicilina, 100
µg/ml; para la cepa GV2260 (pBI121) y Streptomicina, 10 µg/ml; Kanamicina 50 µg/ml;
para LBA4404 (pBI121)), a 27°C, 150 r.p.m. y en completa oscuridad hasta alcanzar una
lectura de turbidez OD
600
= 0.4 0.5. Posteriormente la bacteria fue colectada, lavada y
resuspendida en medio LB líquido libre de antibióticos para prevenir la inhibición del
crecimiento de las plantas. Con la ayuda de pinzas estériles se tomaron los explantes
foliares previamente cortados y se sumergieron en cada una de las suspensiones bacterianas
por 15 minutos. Este procedimiento se realizó con 5 explantes para cada cepa. Pasados los
15 minutos los explantes fueron retirados de la suspensión bacteriana, secados en papel
filtro estéril y colocados con el lado adaxial hacia abajo en medio MS sólido libre de
antibióticos. Simultáneamente a este proceso se tomaron 4 explantes foliares previamente
cortados y fueron colocados en una placa de Petri que contenía medio MS sólido estéril y
libre de antibióticos, sin pasar previamente por las suspensiones bacterianas, los cuales
constituyeron los explantes control no infectados. Finalmente, las 3 placas de Petri (con
hojas infectadas y con hojas control) fueron incubadas por dos días a 26 °C y en completa
oscuridad, para el co-cultivo con A. tumefaciens
Para la infección de explantes foliares de S. tuberosum, sólo se trabajó con la cepa
LBA4404 (pBI121). Estas bacterias fueron cultivadas en medio YEP líquido con los
antibióticos respectivos (Streptomicina, 10 µg/ml; Kanamicina 50 µg/ml), a 27°C, 150
r.p.m. y en completa oscuridad hasta alcanzar una lectura de turbidez OD
600
= 0.3 0.4.
Posteriormente las bacterias fueron colectadas, lavadas y resuspendidas en 11 ml de medio
de infección (IM Infection Medium) líquido y libre de antibióticos. Luego, 200 µl de esta
suspensión fueron adicionados a placas de Petri que contenían 20 ml de medio IM líquido,
estéril y libre de antibióticos. Con la ayuda de pinzas estériles se tomaron 20 explantes
foliares previamente cortados y se sumergieron con el lado adaxial hacia abajo en las placas
que contenían las suspensión bacteriana. Se repitió este proceso con 50 explantes en total.
Adicionalmente se tomaron 10 explantes foliares previamente cortados y se sumergieron
también con el lado adaxial hacia abajo, en medio IM estéril. Esta última placa sirvió como
control no infectado. Las placas de Petri con los explantes foliares fueron agitadas a 35 rpm
por 15 min., a temperatura ambiente y luego fueron incubadas por 48 horas en completa
[377]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
oscuridad y a la misma temperatura, para el co-cultivo con la bacteria y su respectivo
control.
INDUCCIÓN DE «CALL
A diferencia de otros métodos de transformación no se realizó ningún proceso de
lavado o secado de los explantes antes de transferirlos a medio de regeneración (MGC
Callus induction medium). En esta etapa también se realizaron procedimientos diferentes
para M. esculenta y S. tuberosum.
Para M. esculenta, después de la etapa de co-cultivo con A. tumefaciens los
explantes fueron transferidos al medio inductor de callo MGC
A
, colocándolos con el lado
adaxial hacia abajo. Posteriormente fueron incubados a 21 ± 2°C de temperatura, con un
fotoperiodo de 16 horas luz/8 horas oscuridad y una humedad relativa del 70%. En esta
etapa los explantes fueron transferidos a nuevo medio cada 5 a 7 días, para garantizar el
crecimiento de “callo” y la selección contra A. tumefaciens y otros contaminantes. Esta
etapa se mantuvo por 6 semanas hasta la aparición de callos friables resistentes a
Kanamicina.
Para S. tuberosum, después del periodo de co-cultivo, los explantes fueron sembrados
con el lado adaxial hacia abajo en medio inductor de “callo” MGC
B
y posteriormente
incubados en cámara de crecimiento a 21 ± 2°C de temperatura, con un fotoperiodo de 16
horas luz/8 horas oscuridad y una humedad relativa del 70%, por un periodo de 2 semanas.
En esta etapa se transfirieron los explantes a nuevo medio de cultivo después de 8 días, para
garantizar la selección contra A. tumefaciens y otros contaminantes.
INDUCCIÓN DE BROTES
Una vez formados los callos”, los explantes fueron transferidos a medio inductor de
brote (MGS Shoot induction medium) e incubados como en el paso anterior, durante 3 a 4
semanas.
COMPOSICIÓN DE MEDIOS
Los medios usados en este estudio fueron solidificados con 2.3 g/l de fitagel y el pH
fue ajustado a 5.8.
Medio de infección IM. Este consistió en un medio Murashige & Skoog (MS) libre
de cualquier fitohormona y suplementado con 20 g/l de sacarosa.
Medio inductor de callo MGC
A
. Consistió en un medio MS suplementado con las
fitohormonas auxina: ácido α-naftalinacético (ANA) 0.1 µg/ml y citoquinina: 6-
benzilaminopurina (BAP) 0.5 µg/ml; los antibióticos de selección Kanamicina 100 µg/ml y
Cefotaxime 500 µg/ml; y 30 g/l de sacarosa.
Medio inductor de callo MGC
B
. Medio MS suplementado con 16 g/l de glucosa, 5
mg/l de la auxina ANA, 0.1 mg/l de la citoquinina BAP, 250 mg/l de Cefotaxime y 50 mg/l
de Kanamicina.
Medio inductor de brote MGS. MS suplementado con 16g/l de glucosa, 2.2 mg de la
citoquinina zeatin-ribosa, 0.02 mg/l de la auxina ANA, 0.15 mg/l de la giberalina: ácido
giberélico GA
3
, 250 mg/l de cefotaxime y 50 mg/l de Kanamicina.
DETECCIÓN DE LA TRANSFERENCIA: EXPRESIÓN DEL GEN gusA
Para verificar la transferencia del T-DNA a las células vegetales, se llevó a cabo un
procedimiento de tinción histoquímica de las plantas regeneradas a partir de los explantes
[378]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
de hojas infectadas con A. tumefaciens. Se utilizó el protocolo descrito por Jefferson
(1987) evaluándose de este modo la expresión del gen gusA, la cual se evidencia por una
reacción colorimétrica detectable a simple vista de la enzima β-glucoronidasa codificada
por dicho gen, al reaccionar con el sustrato X-gluc.
A las 5 semanas de incubación de los explantes de M. esculenta en medio MGC
A
se
llevo a cabo un procedimiento de tinción histoquímica, como primer ensayo de verificación
de la transferencia del T-DNA a las células vegetales. Para esto, se extrajeron “callos” de
un explante control, un explante infectado con la cepa LBA 4404 (pBI121) y un explante
infectado con la cepa GV2260 (pBI121), y se sumergieron en 1 ml de solución de tinción
con sustrato X-gluc, la cual tenía la siguiente composición: 1 mM de X-gluc (diluido en
dimetil formamida), 50 mM NaH
2
PO
4
(pH 7.0), 10 mM de EDTA y 0.1% de Triton X-100.
La reacción de tinción se realizó toda la noche a temperatura ambiente y en completa
oscuridad., tras lo cual se incubaron los callos teñidos en etanol al 70 % (vol/vol) para su
conservación.
RESULTADOS
PURIFICACIÓN DEL PLASMIDO BINARIO pBI121
Para verificar la integridad del
plásmido binario pBI121 extraído de células
de E. coli almacenadas en glicerol a -80ºC, se
realizó un análisis electroforético y de
restricción en gel de agarosa (Figura 1). En
este gel se logró verificar la calidad del
plásmido extraído, libre de DNA
contaminante y sin evidencias de degradación
(carril A). Adicionalmente, el análisis de
restricción empleando dos enzimas con sitios
de restricción únicos (EcoRI y HindIII),
permitió confirmar la integridad del plásmido
al obtenerse fragmentos de restricción de
tamaños esperados (carriles B y C). Así la
digestión simple permitió evidenciar un
tamaño de aproximadamente 15 kb, acorde
con el tamaño teórico del plásmido, y la doble
digestión arrojó dos fragmentos de tamaños
esperados: uno de aproximadamente 12 Kb y
el otro de 3 Kb.
TRANSFORMACIÓN Y CALLOGÉNESIS
Los explantes de M. esculenta
infectados con A. tumefaciens y que fueron
cultivados en medio inductor de callo
(MGC
A
), empezaron a desarrollarlo a partir de
la tercera semana de su transferencia a medio
MGC
A
. Tres semanas después, fueron
transferidos a medio inductor de brote (MGS),
es decir, seis semanas después de su co-
Figura 1.- Purificación y Digestión del
plásmido binario pBI121 con las
enzimas de restricción EcoRI y
HindIII. A: Plásmido purificado
(Sin cortar). B: Plásmido digerido
con EcoRI. C: Plásmido digerido con
EcoRI y HindIII
[379]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
cultivo con A. tumefaciens. En esta etapa pudo comprobarse que sólo los explantes
infectados con cepas de A. tumefaciens desarrollaron abundante callo en presencia del
agente de selección (kanamicina) (Figura 2. A y C), mientras que los explantes control no
presentaron callogénesis (Figura 2.B) tal como se esperaba. Esto evidencia que los callos
obtenidos en los explantes infectados, provienen de células transformadas y son muy
probablemente transgénicos.
Es importante
mencionar que los
explantes de M.
esculenta infectados
con la cepa GV2260
(pBI121) desarrollaron
callo con una eficiencia
del 100 %, mientras
que los explantes
infectados con la cepa
LBA4404 (pBI121) lo
hicieron con una
eficiencia del 80%, lo
cual podría indicar una
mayor eficiencia en la
transferencia del T-DNA
a células de tejidos
foliares de yuca por parte de la cepa GV2260, comparado con la cepa LBA4404 (Tabla 1).
Tabla 1. Frecuencia de transformación de explantes de hojas de M. esculenta y eficiencia en
la producción de callo
Explante
N° inicial de
explantes
de
explantes
que
desarrollaron
callo
% de
eficiencia
N° de
explantes
transferidos
a MGS
Infectado con LBA4404 (pBI121)
5
4
80
4
Infectado con GV2260 (pBI121)
5
5
100
4
Para la transformación de explantes de papa (S. tuberosum L.), no se observó a la
fecha formación de callos, tras dos semanas en medio inductor de callo MGC
B
, no obstante
se esperan resultados similares a los obtenidos en yuca.
CONFIRMACIÓN DE LA TRANSFERENCIA Y EXPRESIÓN DEL GEN REPORTERO
Figura 2.- Callos formados en los explantes de M. esculenta a las 6
semanas de cultivo en medio inductor de callo (MGC
A
). A:
Explante infectado con la cepa GV2260 (pBI121). B:
Explantes control. C: Explante infectado con la cepa
LBA4404 (pBI121).
[380]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
Al haberse
obtenido callos de M.
esculenta resistentes a
kanamicina, se decidió
verificar la
transferencia del gen
reportero gusA y su
expresión en estas
células de callo,
mediante tinción
histoquímica en
presencia del sustrato
X-Gluc para la enzima
 glucuronidasa
(GUS). La tinción
logró confirmar la transferencia y expresión del transgen gusA en células de callo
proveniente de explantes infectados con ambas cepas de A. tumefaciens, gracias a la
coloración azul que presentaron las células, indicadora de la presencia de la enzima
reportera GUS (Figura 3). Como control negativo, se realizó la tinción de un callo de 6
semanas proveniente de un explante de M. esculenta no transformado, e inducido en medio
MGC
A
sin agente de selección. Cómo esperado, este callo no presentó coloración azul en
ninguna de sus células. Adicionalmente, cabe destacar que el callo obtenido de un explante
infectado con la cepa GV2260 (pBI121) muestra una mayor cantidad de células
transformadas que el callo obtenido de un explante infectado con la cepa LBA4404
(pBI121), lo cual estaría corroborando que la cepa GV2260 parece ser más eficiente en la
transferencia de T-DNA a células de tejido foliar de M. esculenta que la cepa LBA4404.
RESULTADOS ESPERADOS
Transformación de yuca (M. esculenta Crantz): Al haberse obtenido callos
transgénicos que expresan el gen reportero gusA, se puede esperar obtener tras unas dos a
tres semanas en medio inductor de brotes (MGS) al menos dos plántulas de yuca
transformadas, teniendo en cuenta que la eficiencia de transformación esperada es de
aproximadamente un 40% (W. Terán, comunicación personal).
Transformación de papa (S. tuberosum L.): Aunque es aún muy prematuro el poder
observar callogénesis en los explantes infectados, el protocolo evaluado para la
transformación de tejidos foliares de papa está reportado como un protocolo altamente
eficiente, con rendimientos de transformación superior al 60%. Se espera así obtener callos
embriogénicos tras una semana adicional en medio inductor de callo, y las primeros brotes
transgénicos tras 3 semanas adicionales en medio inductor de brotes. Unos ocho días de
cultivo de estos últimos en medio de enraizamiento, permitiría finalmente la obtención de
plántulas transformadas de papa.
REFERENCIAS
[1]. Li Z., Gray D., 2003. Genetic engineering technologies. In: Trigiano R., Gray D.
(eds). Plant development and biotechnology. CRC Press. USA. Pp: 241-243.
Figura 3.- Tinción histoquímica con buffer X-Gluc de callos
formados en explantes de M. esculenta a las 6 semanas de
cultivo en medio inductor de callo (MGC
A
). A: Callo formado
en un explante infectado con la cepa GV2260 (pBI121). B:
Callo formado en un explante control. C: Callo formado en
un explante infectado con la cepa LBA4404 (pBI121).
BA C
cultivo con A. tumefaciens. En esta etapa pudo comprobarse que sólo los explantes
infectados con cepas de A. tumefaciens desarrollaron abundante callo en presencia del
agente de selección (kanamicina) (Figura 2. A y C), mientras que los explantes control no
presentaron callogénesis (Figura 2.B) tal como se esperaba. Esto evidencia que los callos
obtenidos en los explantes infectados, provienen de células transformadas y son muy
probablemente transgénicos.
Es importante
mencionar que los
explantes de M.
esculenta infectados
con la cepa GV2260
(pBI121) desarrollaron
callo con una eficiencia
del 100 %, mientras
que los explantes
infectados con la cepa
LBA4404 (pBI121) lo
hicieron con una
eficiencia del 80%, lo
cual podría indicar una
mayor eficiencia en la
transferencia del T-DNA
a células de tejidos
foliares de yuca por parte de la cepa GV2260, comparado con la cepa LBA4404 (Tabla 1).
Tabla 1. Frecuencia de transformación de explantes de hojas de M. esculenta y eficiencia en
la producción de callo
Explante
N° inicial de
explantes
de
explantes
que
desarrollaron
callo
% de
eficiencia
N° de
explantes
transferidos
a MGS
Infectado con LBA4404 (pBI121)
5
4
80
4
Infectado con GV2260 (pBI121)
5
5
100
4
Para la transformación de explantes de papa (S. tuberosum L.), no se observó a la
fecha formación de callos, tras dos semanas en medio inductor de callo MGC
B
, no obstante
se esperan resultados similares a los obtenidos en yuca.
CONFIRMACIÓN DE LA TRANSFERENCIA Y EXPRESIÓN DEL GEN REPORTERO
Figura 2.- Callos formados en los explantes de M. esculenta a las 6
semanas de cultivo en medio inductor de callo (MGC
A
). A:
Explante infectado con la cepa GV2260 (pBI121). B:
Explantes control. C: Explante infectado con la cepa
LBA4404 (pBI121).
[381]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
Al haberse
obtenido callos de M.
esculenta resistentes a
kanamicina, se decidió
verificar la
transferencia del gen
reportero gusA y su
expresión en estas
células de callo,
mediante tinción
histoquímica en
presencia del sustrato
X-Gluc para la enzima
 glucuronidasa
(GUS). La tinción
logró confirmar la transferencia y expresión del transgen gusA en células de callo
proveniente de explantes infectados con ambas cepas de A. tumefaciens, gracias a la
coloración azul que presentaron las células, indicadora de la presencia de la enzima
reportera GUS (Figura 3). Como control negativo, se realizó la tinción de un callo de 6
semanas proveniente de un explante de M. esculenta no transformado, e inducido en medio
MGC
A
sin agente de selección. Cómo esperado, este callo no presentó coloración azul en
ninguna de sus células. Adicionalmente, cabe destacar que el callo obtenido de un explante
infectado con la cepa GV2260 (pBI121) muestra una mayor cantidad de células
transformadas que el callo obtenido de un explante infectado con la cepa LBA4404
(pBI121), lo cual estaría corroborando que la cepa GV2260 parece ser más eficiente en la
transferencia de T-DNA a células de tejido foliar de M. esculenta que la cepa LBA4404.
RESULTADOS ESPERADOS
Transformación de yuca (M. esculenta Crantz): Al haberse obtenido callos
transgénicos que expresan el gen reportero gusA, se puede esperar obtener tras unas dos a
tres semanas en medio inductor de brotes (MGS) al menos dos plántulas de yuca
transformadas, teniendo en cuenta que la eficiencia de transformación esperada es de
aproximadamente un 40% (W. Terán, comunicación personal).
Transformación de papa (S. tuberosum L.): Aunque es aún muy prematuro el poder
observar callogénesis en los explantes infectados, el protocolo evaluado para la
transformación de tejidos foliares de papa está reportado como un protocolo altamente
eficiente, con rendimientos de transformación superior al 60%. Se espera así obtener callos
embriogénicos tras una semana adicional en medio inductor de callo, y las primeros brotes
transgénicos tras 3 semanas adicionales en medio inductor de brotes. Unos ocho días de
cultivo de estos últimos en medio de enraizamiento, permitiría finalmente la obtención de
plántulas transformadas de papa.
REFERENCIAS
[1]. Li Z., Gray D., 2003. Genetic engineering technologies. In: Trigiano R., Gray D.
(eds). Plant development and biotechnology. CRC Press. USA. Pp: 241-243.
Figura 3.- Tinción histoquímica con buffer X-Gluc de callos
formados en explantes de M. esculenta a las 6 semanas de
cultivo en medio inductor de callo (MGC
A
). A: Callo formado
en un explante infectado con la cepa GV2260 (pBI121). B:
Callo formado en un explante control. C: Callo formado en
un explante infectado con la cepa LBA4404 (pBI121).
BA C
[2]. Barrero I., Chaparro A., Expresión GUS de explantes de Solanum phureja (Juz. et.
Buk) Var. Criolla Colombia, Transformados con Agrobacterium tumefaciens. Acta
biol. Colomb., 2008, 13. 1, 119-130.
[3]. Díaz M., Zappacosta D, Franzone P., Ríos R., 2004. Transformación genética. In:
Echenique V., Rubinstein C., Mroginski L. (eds). Biotecnología y mejoramiento
vegetal. Instituto Nacional de Tecnología Agropecuaria INTA. Argentina. Pp: 109-
123.
[4]. Vandemark G., 1999. Transgenic plants for the improvement of field characteristics
limiting crop production. In: Paredes O. (ed). Molecular biotechnology for plant food
produccion. Technomic Publishing Company, Inc. Pennsylvania. Pp: 219-262.
[5]. Potrykus I., Spangenberg G., 1995. Gene Transfer to plants, Springer, Berlin. Pp:
[6]. Jordan M., Hobbs S., Evaluation of a cotyledonary node regeneration system for
Agrobacterium-mediated transformation of pea (Pisum sativum L.). In Vitro Cell.
Dev. Biol., 1993, 29. 2, 77-82.
[7]. Seetharam R., Sridhar K, A modified freezethaw method for efficient transformation
of Agrobacterium tumefaciens. Current Science, 2007, 93. 6, 770-772.
[8]. Bodanese M., Pasquali G., 2004. Plantas Transgênicas. In: Mir L. (ed). Genômica.
Atheneu. São Paulo. Pp 724-734.
[9]. Grierson D., Covey S., 1991. Biología molecular de las plantas. Acriba, S. A.,
Zaragoza. Pp 149-166.
[10]. Glick B., Pasternak J., 2003. Molecular biotechnology. 3
a
ed. ASM Press.
Washington, D.C. pp 514-520.
[11]. Valderrama A., Arango R., Afanador L., Transformación de plantas mediada por
Agrobacterium: “Ingeniería genética natural aplicada”. Rev. Fac. Nal. Agr. Medellín,
2005, 58. 1., 2569-2585.
[12]. Tepfer D., Genetic transformation using Agrobacterium rhizogenes. Physiologia
Plantarum,1990, 79,140-146.
[13]. Garcia A., 2007. Evaluación de algunas condiciones de la transformación genética de
crisantemo (Dendrathema grandiflora) vairedad white albatros utilizando
Agrobacterium tumefaciens. Tesis de grado. Pontificia Universidad Javeriana.
Facultad de Ciencias. Carrera de Biología. Bogotá D.C. 102p.
[14]. Miki B., McHugh S., Selectable marker genes in transgenic plants: applications,
alternatives and biosafety. Journal of Biotechnology, 2004, 107, 193-232.
[15]. Dolgov S., Firsov A., Regeneration and Agrobacterium transformation of sour cherry
leaf discs. Acta Horticulturae, 1999, 484, 577-579.
[16]. Druart P., Delporte F., Brazda M., Ugarte-Ballon C., da Câmara Machado A., Laimer
da Câmara Machado M., Jacquemin J., Watillon B., Genetic transformation of cherry
trees. Acta Horticulturae, 1998, 468, 71-76.
[382]
memorias * red-alfa lagrotech * comunidad europea * cartagena 2008
[17]. Jefferson R., Kavanagh T., Bevan M., GUS fusions: ß-glucuronidase as a sensitive
and versatile gene fusion marker in higher plants. The EMBO Journal, 1987, 6, 3901-
3907.
[18]. Chiu C., Niwa Y., Zeng W., Hirano T., Kobayashi H., Sheen J., Engineered GFP as a
vital reporter in plants. Current Biology, 1996, 6, 325-330.
[19]. Lea P., Leegood R., 1999. Plant biochemistry and molecular biology. 2
a
ed. John
Wiley & Sons Ltd. Chichester. Pp 339-342.
[20]. Bhojwani S., Razdan M., 1986. Plant tissue culture: theory and practice. (3rd ed.)
(Bhojwani,S.S. y Razdan,M.K. eds.) Elsevier science Publishers B.V., Amsterdam,
The Netherlands. pp.: 488.